Quantum Information Science: Communication and Computation Homework 2

Due Monday 25 September 2023, by 8:40am in class (no late homeworks accepted)
(You are allowed to work with 1-2 other classmates as long as you write down who your collaborators are.)

1. The singular value decomposition of an $m \times n$ matrix A can be written as $A=U \Sigma V^{\dagger}$, where U is an $m \times m$ unitary matrix, Σ is an $m \times n$ rectangular, diagonal matrix containing r singular values (where r is the rank of A), and V is an $n \times n$ unitary matrix. Show that this is equivalent to writing A as

$$
\begin{equation*}
A=\sum_{i=1}^{r} s_{i}\left|\phi_{i}\right\rangle\left\langle\psi_{i}\right| \tag{1}
\end{equation*}
$$

where $\left\{s_{i}\right\}_{i=1}^{r}$ is a set of strictly positive singular values, $\left\{\left|\phi_{i}\right\rangle\right\}_{i=1}^{m}$ is an orthonormal basis, and $\left\{\left|\psi_{i}\right\rangle\right\}_{i=1}^{n}$ is an orthonormal basis.
2. Define the SWAP operator as

$$
\begin{equation*}
\text { SWAP }:=\sum_{i, j=1}^{d}|i\rangle\langle j| \otimes|j\rangle\langle i| . \tag{2}
\end{equation*}
$$

(a) Show that this indeed performs a swap, in the following sense:

$$
\begin{equation*}
\operatorname{SWAP}(|\psi\rangle \otimes|\phi\rangle)=|\phi\rangle \otimes|\psi\rangle \tag{3}
\end{equation*}
$$

(b) Show that SWAP is Hermitian and unitary.
(c) Show that the eigenvalues of SWAP are +1 and -1 . Show that the projection onto the +1 -eigenspace of SWAP is $\frac{1}{2}(I \otimes I+\mathrm{SWAP})$, and show that the projection onto the -1-eigenspace of SWAP is $\frac{1}{2}(I \otimes I-$ SWAP $)$.
(d) For $d=2$, show that

$$
\begin{equation*}
\text { SWAP }=\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right|+\left|\Phi^{-}\right\rangle\left\langle\Phi^{-}\right|+\left|\Psi^{+}\right\rangle\left\langle\Psi^{+}\right|-\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right| \tag{4}
\end{equation*}
$$

where these are the Bell states. Conclude that

$$
\begin{align*}
& \frac{1}{2}(I \otimes I+\mathrm{SWAP})=\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right|+\left|\Phi^{-}\right\rangle\left\langle\Phi^{-}\right|+\left|\Psi^{+}\right\rangle\left\langle\Psi^{+}\right|, \tag{5}\\
& \frac{1}{2}(I \otimes I-\mathrm{SWAP})=\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right| \tag{6}
\end{align*}
$$

in this case.
(e) Show that, for $d \times d$ matrices A and B,

$$
\begin{equation*}
\operatorname{SWAP}(A \otimes B) \operatorname{SWAP}^{\dagger}=B \otimes A, \tag{7}
\end{equation*}
$$

again demonstrating the swapping properties of SWAP.
(f) Show that

$$
\begin{equation*}
\operatorname{Tr}[\operatorname{SWAP}(A \otimes B)]=\operatorname{Tr}[A B] \tag{8}
\end{equation*}
$$

(g) Define the partial transpose operation as

$$
\begin{equation*}
\left(\mathrm{id}_{1} \otimes T_{2}\right)\left(W_{12}\right)=\sum_{i, j}\left(I _ { 1 } \otimes | i \rangle \langle j | _ { 2 }) (W _ { 1 2 }) \left(I_{1} \otimes|i\rangle\left\langle\left. j\right|_{2}\right)\right.\right. \tag{9}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\left(\operatorname{id}_{1} \otimes T_{2}\right)\left(\Phi^{d}\right)=\frac{1}{d} \mathrm{SWAP}, \tag{10}
\end{equation*}
$$

where Φ^{d} is the maximally entangled state, defined as

$$
\begin{align*}
\Phi^{d} & :=\left|\Phi^{d}\right\rangle\left\langle\Phi^{d}\right|, \tag{11}\\
\left|\Phi^{d}\right\rangle & :=\frac{1}{\sqrt{d}} \sum_{i=1}^{d}|i\rangle|i\rangle . \tag{12}
\end{align*}
$$

3. Define the cyclic shift operation as

$$
\begin{equation*}
\mathrm{CYC}_{n}:=\sum_{i_{1}, i_{2}, \ldots, i_{n}}\left|i_{1}\right\rangle\left\langle i_{2}\right| \otimes\left|i_{2}\right\rangle\left\langle i_{3}\right| \otimes \cdots \otimes\left|i_{n-1}\right\rangle\left\langle i_{n}\right| \otimes\left|i_{n}\right\rangle\left\langle i_{1}\right| . \tag{13}
\end{equation*}
$$

(a) Prove that the cyclic shift is unitary. Is it Hermitian?
(b) For $d \times d$ matrices A_{1}, \ldots, A_{n}, prove that

$$
\begin{equation*}
\operatorname{Tr}\left[\operatorname{CYC}_{n}\left(A_{1} \otimes \cdots \otimes A_{n}\right)\right]=\operatorname{Tr}\left[A_{1} \cdots A_{n}\right] \tag{14}
\end{equation*}
$$

4. Tricks with maximally entangled states:
(a) Prove the transpose trick. That is, for a matrix A, prove that the following holds:

$$
\begin{equation*}
(A \otimes I)\left|\Phi^{d}\right\rangle=\left(I \otimes A^{T}\right)\left|\Phi^{d}\right\rangle \tag{15}
\end{equation*}
$$

(b) Prove that

$$
\begin{equation*}
\left(I _ { 1 } \otimes \left\langle\Phi ^ { d } | _ { 2 3 } \otimes \left\langle\left.\Phi^{d}\right|_{45} \otimes\left\langle\left.\Phi^{d}\right|_{67}\right)\left(\left|\Phi^{d}\right\rangle_{12} \otimes\left|\Phi^{d}\right\rangle_{34} \otimes\left|\Phi^{d}\right\rangle_{56} \otimes I_{7}\right)=\frac{1}{d^{3}} I_{7 \rightarrow 1},\right.\right.\right. \tag{16}
\end{equation*}
$$

where $I_{7 \rightarrow 1}$ is the identity operator that takes system 7 to system 1.
5. Use the Cauchy-Schwarz inequality to prove that the maximally entangled state $\left|\Phi^{+}\right\rangle$ of two qubits cannot be written as a product $|\phi\rangle \otimes|\psi\rangle$, and so it is thus entangled. (Hint: prove that $\mid\left.\left\langle\Phi^{+}\right|(|\phi\rangle \otimes|\psi\rangle)\right|^{2} \leq 1 / 2$).
6. Exercises 3.3.11, 3.5.4, 3.5.5, 3.5.6, 3.6.1 in arXiv:1106.1445.

