ECE 4950 Fall 2023

Quantum Information Science: Communication and Computation Homework 1

Due Monday 11 September 2023, by 8:40am in class (no late homeworks accepted)

(You are allowed to work with 1-2 other classmates as long as you write down who your collaborators are.)

- 1. Concentration inequalities:
 - (a) Prove the Markov inequality. That is, for a random variable X whose realizations are non-negative, prove that

$$\Pr\{X \ge \varepsilon\} \le \frac{\mathbb{E}\{X\}}{\varepsilon}.$$

(b) Prove the Chebyshev inequality. That is, for any random variable with finite second moment, show that the following inequality holds:

$$\Pr\{|X - \mathbb{E}\{X\}| \ge \varepsilon\} \le \frac{\operatorname{Var}\{X\}}{\varepsilon^2},$$

where $\operatorname{Var}\{X\} = \mathbb{E}\{|X - \mathbb{E}\{X\}|^2\}.$

(c) Prove the following law of large numbers. For a large number of pairwise independent and identically distributed random variables X_1, \ldots, X_n , (such that $\mathbb{E}\{X_i\} = \mu$ and $\mathbb{E}\{|X_i - \mu|^2\} = \sigma^2$ for all $i \in \{1, \ldots, n\}$) the probability that the sample mean deviates from the true mean has a power law decay:

$$\Pr\left\{ \left| \frac{1}{n} \sum_{i=1}^{n} X_i - \mu \right| \ge \varepsilon \right\} \le \frac{\sigma^2}{\varepsilon^2 n}.$$

(d) Prove the Hoeffding inequality (feel free to consult Wikipedia). That is, for a large number of bounded independent and identically distributed random variables X_1 , ..., X_n taking values in [a, b], show that the probability that their sum $S_n = \sum_{i=1}^n X_i$ deviates from the expected sum $\mathbb{E}[S_n]$ by an additive constant (one-sided) decays exponentially with the number of samples taken:

$$\Pr\{S - \mathbb{E}[S_n] \ge t\} \le \exp\left(-2t^2/nM^2\right),$$

where M = b - a.

(e) Under the same assumptions as (d), prove also that

$$\Pr\{S - \mathbb{E}[S_n] \le -t\} \le \exp\left(-2t^2/nM^2\right). \tag{1}$$

(f) Under the same assumptions as (d), use the union bound to conclude that

$$\Pr\{|S - \mathbb{E}[S_n]| \ge t\} \le 2\exp\left(-2t^2/nM^2\right).$$
(2)

(g) Under the same assumptions as (d), for the sample mean $\overline{X^n} = \frac{1}{n} \sum_{i=1}^n X_i$ with expectation μ , prove that

$$\Pr\{\left|\overline{X^n} - \mu\right| \ge \varepsilon\} \le 2\exp\left(-2n\varepsilon^2/M^2\right). \tag{3}$$

(h) Under the same assumptions as (d), rewrite the result from (g) to conclude the claim from class, that, to have a desired accuracy $\varepsilon > 0$ and success probability at least $1 - \delta$, i.e.,

$$\Pr\{\left|\overline{X^n} - \mu\right| \le \varepsilon\} \ge 1 - \delta,\tag{4}$$

the Hoeffding inequality guarantees that the following number n of samples suffices:

$$n \ge \frac{M^2}{\varepsilon^2} \ln\left(\frac{2}{\delta}\right). \tag{5}$$

- (i) Under the same assumptions as (d), suppose that there is a probabilistic algorithm that takes p(m) steps to output an independent sample of the random variable X, where m is the size of the computational problem and p(m) is a polynomial in m. What are the smallest values of the accuracy ε and success probability 1δ such that, by taking independent samples of X and forming the sample mean, the resulting algorithm can be considered efficient? That is, can we take ε to be exponentially small in m / polynomially small?
- 2. Given is a random variable X with probability distribution p(x) and a random variable Y with probability distribution q(x).
 - (a) Devise a probabilistic algorithm to estimate $\sum_{x} p^{2}(x)$. Use the Hoeffding inequality to give guarantees on the accuracy and success probability of the algorithm. (Hint: Use the fact that $\sum_{x} p^{2}(x) = \sum_{x,x'} \delta_{x,x'} p(x) p(x')$ and observe that this rewriting allows for understanding the quantity of interest as the expected value of a random variable that takes values $\delta_{x,x'}$ with probability p(x)p(x').)
 - (b) Devise a probabilistic algorithm to estimate $\sum_{x} p^{k}(x)$, where $k \in \mathbb{N}$.
 - (c) Devise a probabilistic algorithm to estimate $\sum_{x} p(x)q(x)$.
 - (d) Devise a probabilistic algorithm to estimate the squared Euclidean distance between the distributions p and q:

$$\sum_{x} |p(x) - q(x)|^2$$

Use the union bound, the triangle inequality, and the Hoeffding inequality to give precise guarantees on the accuracy and success probability of the algorithm. Conclude that $O(\varepsilon^{-2} \ln \delta^{-1})$ samples from p and q suffice.

3. In class, we considered an abstract algorithm \mathcal{A} for primality testing of an integer N, which outputs "prime" with probability $p_1 \geq 2/3$ when N is prime and outputs "not prime" with probability $p_0 \geq 2/3$ when N is not prime. We then considered a majority vote algorithm \mathcal{A}' and analyzed its failure probability when N is prime, by

making use of the Chernoff bound $\Pr[S \leq (1-\delta)\mathbb{E}[S]] \leq \exp(-\delta^2\mathbb{E}[S]/2)$. Analyze the failure probability of \mathcal{A}' when N is not prime, by making use of the Chernoff bound $\Pr[S \geq (1+\delta)\mathbb{E}[S]] \leq \exp(-\delta^2\mathbb{E}[S]/(2+\delta))$.

- 4. Pauli matrices:
 - (a) Show that the Pauli matrices are all Hermitian, unitary, they square to the identity, and their eigenvalues are ± 1 .
 - (b) Represent the eigenstates of the Y Pauli matrix in the standard basis.
 - (c) Show that the Pauli matrices either commute or anticommute.
 - (d) Let us label the Pauli matrices as $\sigma_0 \equiv I$, $\sigma_1 \equiv X$, $\sigma_2 \equiv Y$, and $\sigma_3 \equiv Z$.
 - (e) Show that $\text{Tr}[\sigma_i \sigma_j] = 2\delta_{ij}$ for all $i, j \in \{0, \dots, 3\}$, where Tr denotes the trace of a matrix, defined as the sum of the entries along the diagonal.