
ECE 4950 Fall 2023
Quantum Information Science: Communication and Computation

Homework 1

Due Monday 11 September 2023, by 8:40am in class (no late homeworks ac-
cepted)

(You are allowed to work with 1-2 other classmates as long as you write down who your
collaborators are.)

1. Concentration inequalities:

(a) Prove the Markov inequality. That is, for a random variable X whose realizations
are non-negative, prove that

Pr{X ≥ ε} ≤ E{X}
ε

.

(b) Prove the Chebyshev inequality. That is, for any random variable with finite
second moment, show that the following inequality holds:

Pr{|X − E{X}| ≥ ε} ≤ Var{X}
ε2

,

where Var{X} = E
{
|X − E{X}|2

}
.

(c) Prove the following law of large numbers. For a large number of pairwise in-
dependent and identically distributed random variables X1, . . . , Xn, (such that
E{Xi} = µ and E

{
|Xi − µ|2

}
= σ2 for all i ∈ {1, . . . , n}) the probability that the

sample mean deviates from the true mean has a power law decay:

Pr

{∣∣∣∣∣ 1n
n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ ε

}
≤ σ2

ε2n
.

(d) Prove the Hoeffding inequality (feel free to consult Wikipedia). That is, for a large
number of bounded independent and identically distributed random variables X1,
. . . , Xn taking values in [a, b], show that the probability that their sum Sn =∑n

i=1Xi deviates from the expected sum E[Sn] by an additive constant (one-
sided) decays exponentially with the number of samples taken:

Pr{S − E[Sn] ≥ t} ≤ exp
(
−2t2/nM2

)
,

where M = b− a.

(e) Under the same assumptions as (d), prove also that

Pr{S − E[Sn] ≤ −t} ≤ exp
(
−2t2/nM2

)
. (1)

(f) Under the same assumptions as (d), use the union bound to conclude that

Pr{|S − E[Sn]| ≥ t} ≤ 2 exp
(
−2t2/nM2

)
. (2)
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(g) Under the same assumptions as (d), for the sample mean Xn = 1
n

∑n
i=1Xi with

expectation µ, prove that

Pr
{∣∣Xn − µ

∣∣ ≥ ε
}
≤ 2 exp

(
−2nε2/M2

)
. (3)

(h) Under the same assumptions as (d), rewrite the result from (g) to conclude the
claim from class, that, to have a desired accuracy ε > 0 and success probability
at least 1− δ, i.e.,

Pr
{∣∣Xn − µ

∣∣ ≤ ε
}
≥ 1− δ, (4)

the Hoeffding inequality guarantees that the following number n of samples suf-
fices:

n ≥ M2

ε2
ln

(
2

δ

)
. (5)

(i) Under the same assumptions as (d), suppose that there is a probabilistic algorithm
that takes p(m) steps to output an independent sample of the random variable
X, where m is the size of the computational problem and p(m) is a polynomial in
m. What are the smallest values of the accuracy ε and success probability 1− δ
such that, by taking independent samples of X and forming the sample mean,
the resulting algorithm can be considered efficient? That is, can we take ε to be
exponentially small in m / polynomially small? Can we take δ to be exponentially
small in m / polynomially small?

2. Given is a random variable X with probability distribution p(x) and a random variable
Y with probability distribution q(x).

(a) Devise a probabilistic algorithm to estimate
∑

x p
2(x). Use the Hoeffding inequal-

ity to give guarantees on the accuracy and success probability of the algorithm.
(Hint: Use the fact that

∑
x p

2(x) =
∑

x,x′ δx,x′p(x)p(x′) and observe that this
rewriting allows for understanding the quantity of interest as the expected value
of a random variable that takes values δx,x′ with probability p(x)p(x′).)

(b) Devise a probabilistic algorithm to estimate
∑

x p
k(x), where k ∈ N.

(c) Devise a probabilistic algorithm to estimate
∑

x p(x)q(x).

(d) Devise a probabilistic algorithm to estimate the squared Euclidean distance be-
tween the distributions p and q:∑

x

|p(x)− q(x)|2

Use the union bound, the triangle inequality, and the Hoeffding inequality to
give precise guarantees on the accuracy and success probability of the algorithm.
Conclude that O(ε−2 ln δ−1) samples from p and q suffice.

3. In class, we considered an abstract algorithm A for primality testing of an integer
N , which outputs “prime” with probability p1 ≥ 2/3 when N is prime and outputs
“not prime” with probability p0 ≥ 2/3 when N is not prime. We then considered a
majority vote algorithm A′ and analyzed its failure probability when N is prime, by
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making use of the Chernoff bound Pr[S ≤ (1− δ)E[S]] ≤ exp(−δ2E[S]/2). Analyze the
failure probability of A′ when N is not prime, by making use of the Chernoff bound
Pr[S ≥ (1 + δ)E[S]] ≤ exp(−δ2E[S]/(2 + δ)).

4. Pauli matrices:

(a) Show that the Pauli matrices are all Hermitian, unitary, they square to the identity,
and their eigenvalues are ±1.

(b) Represent the eigenstates of the Y Pauli matrix in the standard basis.

(c) Show that the Pauli matrices either commute or anticommute.

(d) Let us label the Pauli matrices as σ0 ≡ I, σ1 ≡ X, σ2 ≡ Y , and σ3 ≡ Z.

(e) Show that Tr[σiσj] = 2δij for all i, j ∈ {0, . . . , 3}, where Tr denotes the trace of a
matrix, defined as the sum of the entries along the diagonal.
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