Quantum Information Science: Communication and Computation Homework 1

Due Monday 11 September 2023, by 8:40am in class (no late homeworks accepted)

(You are allowed to work with 1-2 other classmates as long as you write down who your collaborators are.)

1. Concentration inequalities:
(a) Prove the Markov inequality. That is, for a random variable X whose realizations are non-negative, prove that

$$
\operatorname{Pr}\{X \geq \varepsilon\} \leq \frac{\mathbb{E}\{X\}}{\varepsilon}
$$

(b) Prove the Chebyshev inequality. That is, for any random variable with finite second moment, show that the following inequality holds:

$$
\operatorname{Pr}\{|X-\mathbb{E}\{X\}| \geq \varepsilon\} \leq \frac{\operatorname{Var}\{X\}}{\varepsilon^{2}},
$$

where $\operatorname{Var}\{X\}=\mathbb{E}\left\{|X-\mathbb{E}\{X\}|^{2}\right\}$.
(c) Prove the following law of large numbers. For a large number of pairwise independent and identically distributed random variables X_{1}, \ldots, X_{n}, (such that $\mathbb{E}\left\{X_{i}\right\}=\mu$ and $\mathbb{E}\left\{\left|X_{i}-\mu\right|^{2}\right\}=\sigma^{2}$ for all $i \in\{1, \ldots, n\}$) the probability that the sample mean deviates from the true mean has a power law decay:

$$
\operatorname{Pr}\left\{\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right| \geq \varepsilon\right\} \leq \frac{\sigma^{2}}{\varepsilon^{2} n} .
$$

(d) Prove the Hoeffding inequality (feel free to consult Wikipedia). That is, for a large number of bounded independent and identically distributed random variables X_{1}, \ldots, X_{n} taking values in $[a, b]$, show that the probability that their sum $S_{n}=$ $\sum_{i=1}^{n} X_{i}$ deviates from the expected sum $\mathbb{E}\left[S_{n}\right]$ by an additive constant (onesided) decays exponentially with the number of samples taken:

$$
\operatorname{Pr}\left\{S-\mathbb{E}\left[S_{n}\right] \geq t\right\} \leq \exp \left(-2 t^{2} / n M^{2}\right)
$$

where $M=b-a$.
(e) Under the same assumptions as (d), prove also that

$$
\begin{equation*}
\operatorname{Pr}\left\{S-\mathbb{E}\left[S_{n}\right] \leq-t\right\} \leq \exp \left(-2 t^{2} / n M^{2}\right) \tag{1}
\end{equation*}
$$

(f) Under the same assumptions as (d), use the union bound to conclude that

$$
\begin{equation*}
\operatorname{Pr}\left\{\left|S-\mathbb{E}\left[S_{n}\right]\right| \geq t\right\} \leq 2 \exp \left(-2 t^{2} / n M^{2}\right) \tag{2}
\end{equation*}
$$

(g) Under the same assumptions as (d), for the sample mean $\overline{X^{n}}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ with expectation μ, prove that

$$
\begin{equation*}
\operatorname{Pr}\left\{\left|\overline{X^{n}}-\mu\right| \geq \varepsilon\right\} \leq 2 \exp \left(-2 n \varepsilon^{2} / M^{2}\right) \tag{3}
\end{equation*}
$$

(h) Under the same assumptions as (d), rewrite the result from (g) to conclude the claim from class, that, to have a desired accuracy $\varepsilon>0$ and success probability at least $1-\delta$, i.e.,

$$
\begin{equation*}
\operatorname{Pr}\left\{\left|\overline{X^{n}}-\mu\right| \leq \varepsilon\right\} \geq 1-\delta, \tag{4}
\end{equation*}
$$

the Hoeffding inequality guarantees that the following number n of samples suffices:

$$
\begin{equation*}
n \geq \frac{M^{2}}{\varepsilon^{2}} \ln \left(\frac{2}{\delta}\right) \tag{5}
\end{equation*}
$$

(i) Under the same assumptions as (d), suppose that there is a probabilistic algorithm that takes $p(m)$ steps to output an independent sample of the random variable X, where m is the size of the computational problem and $p(m)$ is a polynomial in m. What are the smallest values of the accuracy ε and success probability $1-\delta$ such that, by taking independent samples of X and forming the sample mean, the resulting algorithm can be considered efficient? That is, can we take ε to be exponentially small in m / polynomially small? Can we take δ to be exponentially small in m / polynomially small?
2. Given is a random variable X with probability distribution $p(x)$ and a random variable Y with probability distribution $q(x)$.
(a) Devise a probabilistic algorithm to estimate $\sum_{x} p^{2}(x)$. Use the Hoeffding inequality to give guarantees on the accuracy and success probability of the algorithm. (Hint: Use the fact that $\sum_{x} p^{2}(x)=\sum_{x, x^{\prime}} \delta_{x, x^{\prime}} p(x) p\left(x^{\prime}\right)$ and observe that this rewriting allows for understanding the quantity of interest as the expected value of a random variable that takes values $\delta_{x, x^{\prime}}$ with probability $p(x) p\left(x^{\prime}\right)$.)
(b) Devise a probabilistic algorithm to estimate $\sum_{x} p^{k}(x)$, where $k \in \mathbb{N}$.
(c) Devise a probabilistic algorithm to estimate $\sum_{x} p(x) q(x)$.
(d) Devise a probabilistic algorithm to estimate the squared Euclidean distance between the distributions p and q :

$$
\sum_{x}|p(x)-q(x)|^{2}
$$

Use the union bound, the triangle inequality, and the Hoeffding inequality to give precise guarantees on the accuracy and success probability of the algorithm. Conclude that $O\left(\varepsilon^{-2} \ln \delta^{-1}\right)$ samples from p and q suffice.
3. In class, we considered an abstract algorithm \mathcal{A} for primality testing of an integer N, which outputs "prime" with probability $p_{1} \geq 2 / 3$ when N is prime and outputs "not prime" with probability $p_{0} \geq 2 / 3$ when N is not prime. We then considered a majority vote algorithm \mathcal{A}^{\prime} and analyzed its failure probability when N is prime, by
making use of the Chernoff bound $\operatorname{Pr}[S \leq(1-\delta) \mathbb{E}[S]] \leq \exp \left(-\delta^{2} \mathbb{E}[S] / 2\right)$. Analyze the failure probability of \mathcal{A}^{\prime} when N is not prime, by making use of the Chernoff bound $\operatorname{Pr}[S \geq(1+\delta) \mathbb{E}[S]] \leq \exp \left(-\delta^{2} \mathbb{E}[S] /(2+\delta)\right)$.
4. Pauli matrices:
(a) Show that the Pauli matrices are all Hermitian, unitary, they square to the identity, and their eigenvalues are ± 1.
(b) Represent the eigenstates of the Y Pauli matrix in the standard basis.
(c) Show that the Pauli matrices either commute or anticommute.
(d) Let us label the Pauli matrices as $\sigma_{0} \equiv I, \sigma_{1} \equiv X, \sigma_{2} \equiv Y$, and $\sigma_{3} \equiv Z$.
(e) Show that $\operatorname{Tr}\left[\sigma_{i} \sigma_{j}\right]=2 \delta_{i j}$ for all $i, j \in\{0, \ldots, 3\}$, where Tr denotes the trace of a matrix, defined as the sum of the entries along the diagonal.

