PHYS 7895: Gaussian Quantum Information
Lecture 10
Lecturer: Mark M. Wilde
Scribe: Kunal Sharma

This document is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Unported License.

1 Overview

In the last lecture, we represented faithful Gaussian states as thermal states of quadratic Hamiltonians and discussed the Williamson theorem.

In this lecture, we first review a method to find the symplectic eigenvalues of a positive definite matrix. We then derive a relation between the Hamiltonian matrix and the covariance matrix corresponding to a faithful Gaussian state. Finally, we determine formulas for the purity and von Neumann entropy of a Gaussian state. We point readers to [Ser17] for background on some of the topics covered in this lecture.

2 Symplectic eigenvalues of a positive definite matrix

In this section, we discuss a method to find the symplectic eigenvalues of a positive definite matrix M.

Let Ω denote the real, canonical, anti-symmetric form defined as

$$
\begin{equation*}
\Omega=I_{n} \otimes \Omega_{1}, \tag{1}
\end{equation*}
$$

where

$$
\Omega_{1}=\left[\begin{array}{cc}
0 & 1 \tag{2}\\
-1 & 0
\end{array}\right]
$$

which encodes the canonical commutation relations of the quadrature operators. Note that $\Omega \Omega^{T}=$ $-\Omega^{2}=I$.

Let S denote a sympletic matrix such that $S \Omega S^{T}=\Omega$. It follows that such a matrix S is invertible with inverse given by $S^{-1}=\Omega S^{T} \Omega^{T}$. We begin by showing that $\Omega S=S^{-T} \Omega$. This is a direct consequence of the fact that S^{T} is symplectic, which can be seen from the following steps:

$$
\begin{align*}
S \Omega S^{T} & =\Omega, \tag{3}\\
\Rightarrow S \Omega S^{T} \Omega & =-I, \tag{4}\\
\Rightarrow S \Omega S^{T} \Omega S & =-S, \tag{5}\\
\Rightarrow S^{-1} S \Omega S^{T} \Omega S & =-S^{-1} S, \tag{6}\\
\Rightarrow \Omega S^{T} \Omega S & =-I, \tag{7}\\
\Rightarrow S^{T} \Omega S & =\Omega \tag{8}
\end{align*}
$$

It then follows that

$$
\begin{equation*}
\Omega S=S^{-T} \Omega . \tag{9}
\end{equation*}
$$

As discussed in the previous lecture, a positive definite $2 n \times 2 n$ matrix M has the following symplectic decomposition:

$$
\begin{equation*}
M=S D S^{T}, \tag{10}
\end{equation*}
$$

where $d_{j}>0$ for all $j \in\{1, \ldots, n\}$,

$$
D=\bigoplus_{j=1}^{n} d_{j}\left[\begin{array}{ll}
1 & 0 \tag{11}\\
0 & 1
\end{array}\right]=D_{n} \otimes I_{2},
$$

and

$$
\begin{equation*}
D_{n}=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right) \tag{12}
\end{equation*}
$$

We now establish a connection between the symplectic eigenvalues of a positive definite matrix M and the eigenvalues of the matrix $i \Omega M$. Consider the following chain of equalities:

$$
\begin{align*}
i \Omega M & =i \Omega S D S^{T} \tag{13}\\
& =i \Omega S\left(D_{n} \otimes I_{2}\right) S^{T} \tag{14}\\
& =S^{-T}(i \Omega)\left(D_{n} \otimes I_{2}\right) S^{T} \tag{15}\\
& =S^{-T}\left(I_{n} \otimes i \Omega_{1}\right)\left(D_{n} \otimes I_{2}\right) S^{T} \tag{16}\\
& =S^{-T}\left(D_{n} \otimes i \Omega_{1}\right) S^{T} \tag{17}\\
& =S^{-T}\left(D_{n} \otimes-\sigma_{Y}\right) S^{T} \tag{18}\\
& =\underbrace{S^{-T}\left(I_{n} \otimes U_{2}\right)}_{B}\left(D_{n} \otimes-\sigma_{Z}\right) \underbrace{\left(I_{n} \otimes U_{2}^{\dagger}\right) S^{T}}_{B^{-1}} . \tag{19}
\end{align*}
$$

The first equality follows from (10). The second equality follows from (11). The third equality follows from (9). The fourth equality follows from the definition of Ω as defined in (1). The last two equalities follow from the fact that

$$
\begin{equation*}
i \Omega_{1}=-\sigma_{Y}=U_{2}\left(-\sigma_{Z}\right) U_{2}^{\dagger} \tag{20}
\end{equation*}
$$

where

$$
U_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \tag{21}\\
i & -i
\end{array}\right] .
$$

From (19) and from the fact that $D_{n} \otimes-\sigma_{Z}=\operatorname{diag}\left(-d_{1}, d_{1},-d_{2}, d_{2}, \ldots,-d_{n}, d_{n}\right)$, it follows that the usual eigendecomposition of $i \Omega M$ is given by $B\left(D_{n} \otimes-\sigma_{Z}\right) B^{-1}$, where

$$
\begin{equation*}
B=S^{-T}\left(I_{n} \otimes U_{2}\right) \tag{22}
\end{equation*}
$$

is the matrix of eigenvectors. We note that S^{-T} can be expressed in terms of Ω and S. Since $S \Omega S^{T}=\Omega$, it follows that $S \Omega S^{T} \Omega^{T}=\Omega \Omega^{T}$. Since $\Omega \Omega^{T}=I, S^{-1}=\Omega S^{T} \Omega^{T}$. Therefore, $S^{-T}=$ $\Omega S \Omega^{T}$.

Therefore, a method to find the symplectic eigenvalues of a positive definite matrix M is as follows. We first find the usual eigendecomposition of the matrix $i \Omega M$, and the corresponding eigenvalues provide the information of symplectic eigenvalues of the matrix M. Moreover, the symplectic matrix S corresponding to the transformation $M=S D S^{T}$, can be found from the eigenvector matrix $B=S^{-T}\left(I_{n} \otimes U_{2}\right)=\Omega S \Omega^{T}\left(I_{n} \otimes U_{2}\right)$ as defined in 22), i.e., $S=B^{-T}\left(I_{n} \otimes U_{2}^{T}\right)=\Omega^{T} B\left(I_{n} \otimes U_{2}^{\dagger}\right) \Omega$.

3 Relationship between the Hamiltonian matrix and the covariance matrix for a faithful Gaussian state

In this section, we derive the following relations between the Hamiltonian matrix and the covariance matrix corresponding to a faithful Gaussian state:

$$
\begin{align*}
\sigma & =\operatorname{coth}\left(\frac{i \Omega H}{2}\right) i \Omega \tag{23}\\
H & =2 \operatorname{arccoth}(i \Omega \sigma) i \Omega \tag{24}
\end{align*}
$$

As discussed in the previous lecture, a positive definite matrix H can be represented in the following symplectic diagonalized form:

$$
H=S^{T} \bigoplus_{j=1}^{n} \lambda_{j}\left[\begin{array}{ll}
1 & 0 \tag{25}\\
0 & 1
\end{array}\right] S
$$

where $\lambda_{j}>0, \forall j \in\{1, \ldots, n\}$.
Moreover, the corresponding covariance matrix σ can be written as

$$
\sigma=S^{-1} \bigoplus_{j=1}^{n} \operatorname{coth}\left(\frac{\lambda_{j}}{2}\right)\left[\begin{array}{ll}
1 & 0 \tag{26}\\
0 & 1
\end{array}\right] S^{-T},
$$

where $\nu_{j} \equiv \operatorname{coth}\left(\lambda_{j} / 2\right)$ for $j \in\{1, \ldots, n\}$ are the symplectic eigenvalues of σ.
From (19) and (25), it follows that

$$
\begin{equation*}
\frac{1}{2} i \Omega H=\frac{1}{2} S^{-1}\left(I_{n} \otimes U_{2}\right)\left(D_{n} \otimes-\sigma_{Z}\right)\left(I_{n} \otimes U_{2}^{\dagger}\right) S \tag{27}
\end{equation*}
$$

where $D_{n}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$.
Consider the following chain of equalities:

$$
\begin{align*}
\operatorname{coth}\left(\frac{i \Omega H}{2}\right) & =S^{-1}\left(I_{n} \otimes U_{2}\right) \operatorname{coth}\left(\frac{D_{n} \otimes-\sigma_{Z}}{2}\right)\left(I_{n} \otimes U_{2}^{\dagger}\right) S \tag{28}\\
& =S^{-1}\left(I_{n} \otimes U_{2}\right)\left(\operatorname{coth}\left(D_{n} / 2\right) \otimes-\sigma_{Z}\right)\left(I_{n} \otimes U_{2}^{\dagger}\right) S \tag{29}\\
& =S^{-1}\left(\operatorname{coth}\left(D_{n} / 2\right) \otimes i \Omega_{1}\right) S \tag{30}\\
& =S^{-1}\left(\operatorname{coth}\left(D_{n} / 2\right) \otimes I_{2}\right)\left(I_{n} \otimes i \Omega_{1}\right) S \tag{31}\\
& =S^{-1}\left(\operatorname{coth}\left(D_{n} / 2\right) \otimes I_{2}\right) i \Omega S \tag{32}\\
& =S^{-1}\left(\operatorname{coth}\left(D_{n} / 2\right) \otimes I_{2}\right) S^{-T} i \Omega \tag{33}\\
& =\sigma i \Omega \tag{34}
\end{align*}
$$

The first equality follows from (27). The second equality follows from the fact that $\operatorname{coth}(\cdot)$ is an odd function. The third equality follows from (20). The fifth equality follows from (1). The sixth equality follows from (9). The last equality follows from (26).
Therefore, we get

$$
\begin{align*}
\operatorname{coth}\left(\frac{i \Omega H}{2}\right) i \Omega & =\sigma(i \Omega)(i \Omega) \tag{35}\\
& =\sigma . \tag{36}
\end{align*}
$$

Similarly, the relation in (24) can be derived.

4 Uncertainty relation and symplectic eigenvalues of a covariance matrix

Previously, we proved that the following uncertainty relation holds for any n-mode quantum state that has a finite covariance matrix σ :

$$
\begin{equation*}
\sigma+i \Omega \geq 0 \tag{37}
\end{equation*}
$$

We now discuss the restriction imposed by the uncertainty relation in (37) on the symplectic eigenvalues of σ. Let S be the symplectic matrix diagonalizing σ as

$$
S \sigma S^{T}=D=\bigoplus_{j=1}^{n} d_{j}\left[\begin{array}{ll}
1 & 0 \tag{38}\\
0 & 1
\end{array}\right] .
$$

We now prove that (37) implies $d_{j} \geq 1, \forall j$. Consider the following chain of inequalities:

$$
\begin{align*}
\sigma+i \Omega & \geq 0 \tag{39}\\
\Rightarrow S(\sigma+i \Omega) S^{T} & \geq 0 \tag{40}\\
\Rightarrow S \sigma S^{T}+i S \Omega S^{T} & \geq 0 \tag{41}\\
\Rightarrow D+i \Omega & \geq 0 \tag{42}\\
\Rightarrow \bigoplus_{j=1}^{n} d_{j}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+i\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] & \geq 0 \tag{43}\\
\Rightarrow \bigoplus_{j=1}^{n}\left[\begin{array}{cc}
d_{j} & i \\
-i & d_{j}
\end{array}\right] & \geq 0 \tag{44}\\
\Rightarrow\left[\begin{array}{cc}
d_{j} & i \\
-i & d_{j}
\end{array}\right] & \geq 0, \forall j . \tag{45}
\end{align*}
$$

Since the eigenvalues of $\left[\begin{array}{cc}d_{j} & i \\ -i & d_{j}\end{array}\right]$ are $d_{j}+1$ and $d_{j}-1$, it follows from (45) that $d_{j} \geq 1, \forall j$.
Thus, any quantum covariance matrix σ (i.e., obeying (37) has all of its symplectic eigenvalues greater than or equal to one.

5 Purification of a Gaussian state

In this section, we study Gaussian purifications of Gaussian states. We begin by determining the mean vector and covariance matrix for a tensor product of two Gaussian states.

5.1 Tensor product of two Gaussian states

Let \bar{r}_{A} denote the mean vector and σ_{A} denote the covariance matrix of a Gaussian state ρ_{A}. Let \bar{r}_{B} denote the mean vector and σ_{B} denote the covariance matrix of a Gaussian state ρ_{B}. Then the mean vector of the tensor product state $\rho_{A} \otimes \rho_{B}$ is given by

$$
\bar{r}_{A B} \equiv\left[\begin{array}{l}
\bar{r}_{A} \tag{46}\\
\bar{r}_{B}
\end{array}\right] .
$$

Moreover, the covariance matrix of $\rho_{A} \otimes \rho_{B}$ is given by

$$
\sigma_{A B} \equiv \sigma_{A} \oplus \sigma_{B}=\left[\begin{array}{cc}
\sigma_{A} & 0 \tag{47}\\
0 & \sigma_{B}
\end{array}\right] .
$$

Similarly, if the mean vector of a Gaussian state is $\left[\begin{array}{l}\bar{r}_{A} \\ \bar{r}_{B}\end{array}\right]$ and the covariance matrix is $\left[\begin{array}{cc}\sigma_{A} & 0 \\ 0 & \sigma_{B}\end{array}\right]$, then the Gaussian state is a tensor product of two Gaussian states.

5.2 Gaussian purifications of Gaussian states

A thermal state with mean number of photons $\bar{n} \geq 0$ can be expressed in the photon-number basis as follows.

$$
\begin{equation*}
\theta(\bar{n})=\frac{1}{\bar{n}+1} \sum_{n=0}^{\infty}\left(\frac{\bar{n}}{\bar{n}+1}\right)^{n}|n\rangle\langle n| . \tag{48}
\end{equation*}
$$

Alternatively,

$$
\begin{equation*}
\theta(\lambda)=\frac{1}{z(\lambda)} \sum_{n=0}^{\infty} \exp (-\lambda(n+1 / 2))|n\rangle\langle n|, \tag{49}
\end{equation*}
$$

where $z(\lambda)=\left(e^{\lambda / 2}-e^{-\lambda / 2}\right)^{-1}$ for $\lambda>0$ (note that $\lambda=\ln (1+1 / \bar{n})$).
A purification of the thermal state $\theta_{A}(\bar{n})$ is given by the following two-mode squeezed vacuum (TMS) state:

$$
\begin{equation*}
\left|\psi_{\mathrm{TMS}}(\bar{n})\right\rangle_{A R}=\frac{1}{\sqrt{\bar{n}+1}} \sum_{n=0}^{\infty} \sqrt{\left(\frac{\bar{n}}{\bar{n}+1}\right)^{n}}|n\rangle_{A}|n\rangle_{R} \tag{50}
\end{equation*}
$$

where R is a reference system.

The covariance matrix of the two-mode squeezed vacuum state $\left|\psi_{T M S}(\bar{n})\right\rangle_{A R}$ is given by

$$
\left[\begin{array}{cccc}
2 \bar{n}+1 & 0 & 2 \sqrt{\bar{n}(\bar{n}+1)} & 0 \tag{51}\\
0 & 2 \bar{n}+1 & 0 & -2 \sqrt{\bar{n}(\bar{n}+1)} \\
2 \sqrt{\bar{n}(\bar{n}+1)} & 0 & 2 \bar{n}+1 & 0 \\
0 & -2 \sqrt{\bar{n}(\bar{n}+1)} & 0 & 2 \bar{n}+1
\end{array}\right],
$$

which can be written in the following compact form:

$$
\left[\begin{array}{cc}
(2 \bar{n}+1) I & 2 \sqrt{\bar{n}(\bar{n}+1)} \sigma_{Z} \tag{52}\\
2 \sqrt{\bar{n}(\bar{n}+1)} \sigma_{Z} & (2 \bar{n}+1) I
\end{array}\right] .
$$

By the Williamson theorem, any n-mode Gaussian state ρ can be written as

$$
\begin{equation*}
\rho=\hat{D}_{-\bar{r}} \hat{S}\left[\bigotimes_{j=1}^{n} \theta_{A_{j}}\left(\bar{n}_{j}\right)\right] \hat{S}^{\dagger} \hat{D}_{\bar{r}}, \tag{53}
\end{equation*}
$$

where \hat{S} is a unitary generated by a quadratic Hamiltonian. Then a Gaussian purification of ρ is given by

$$
\begin{equation*}
\left[\hat{D}_{-\bar{r}} \hat{S}\right]_{A^{n}} \bigotimes_{j=1}^{n}\left|\psi_{\mathrm{TMS}}\left(\bar{n}_{j}\right)\right\rangle_{A_{j} R_{j}} \tag{54}
\end{equation*}
$$

The mean vector of this purification is $\left[\begin{array}{l}\bar{r} \\ 0\end{array}\right]$. Moreover, the covariance matrix of this purification is

$$
\left[\begin{array}{cc}
\sigma & S \bigoplus_{j=1}^{n} 2 \sqrt{\bar{n}_{j}\left(\bar{n}_{j}+1\right)} \sigma_{Z} \tag{55}\\
\left(\bigoplus_{j=1}^{n} 2 \sqrt{\bar{n}_{j}\left(\bar{n}_{j}+1\right)} \sigma_{Z}\right) S^{T} & \bigoplus_{j=1}^{n}\left(2 \bar{n}_{j}+1\right) I_{2}
\end{array}\right] .
$$

One can arrive at this conclusion from the fact that

$$
\begin{equation*}
\sigma=S\left(\bigoplus_{j=1}^{n}\left(2 \bar{n}_{j}+1\right) I_{2}\right) S^{T} \tag{56}
\end{equation*}
$$

and the covariance matrix for $\bigotimes_{j=1}^{n}\left|\psi_{\mathrm{TMS}}\left(\bar{n}_{j}\right)\right\rangle_{A_{j} R_{j}}$ is

$$
\left[\begin{array}{cc}
\bigoplus_{j=1}^{n}\left(2 \bar{n}_{j}+1\right) I_{2} & \bigoplus_{j=1}^{n} 2 \sqrt{\bar{n}_{j}\left(\bar{n}_{j}+1\right)} \sigma_{Z} \tag{57}\\
\bigoplus_{j=1}^{n} 2 \sqrt{\bar{n}_{j}\left(\bar{n}_{j}+1\right)} \sigma_{Z} & \bigoplus_{j=1}^{n}\left(2 \bar{n}_{j}+1\right) I_{2}
\end{array}\right] .
$$

We note that the symplectic matrix for the unitary evolution $\hat{S}_{A^{n}} \otimes I_{R^{n}}$ is given by

$$
\left[\begin{array}{cc}
S & 0 \tag{58}\\
0 & I
\end{array}\right] .
$$

6 Purity of a quantum state

The purity of a quantum state ρ is defined as $\operatorname{Tr}\left\{\rho^{2}\right\}$. We now show that $\operatorname{Tr}\left\{\rho^{2}\right\} \leq 1$. Consider the following spectral decomposition of the state ρ :

$$
\begin{equation*}
\rho=\sum_{x} \lambda_{x}\left|\phi_{x}\right\rangle\left\langle\phi_{x}\right| \tag{59}
\end{equation*}
$$

Then

$$
\begin{equation*}
\operatorname{Tr}\left\{\rho^{2}\right\}=\sum_{x} \lambda_{x}^{2} \tag{60}
\end{equation*}
$$

Since $\lambda_{x} \leq 1 \Rightarrow \lambda_{x}^{2} \leq 1$ and since $\sum_{x} \lambda_{x}=1 \Rightarrow \sum_{x} \lambda_{x}^{2} \leq 1$. Therefore, if a state is pure, then $\operatorname{Tr}\left\{\rho^{2}\right\}=1$.

We now show that if $\operatorname{Tr}\left\{\rho^{2}\right\}=1$, then the state is pure. Consider that

$$
\begin{align*}
1 & =\operatorname{Tr}\left\{\rho^{2}\right\} \tag{61}\\
& =\sum_{x} \lambda_{x}^{2} \tag{62}
\end{align*}
$$

Moreover, $\operatorname{Tr}\{\rho\}=\sum_{x} \lambda_{x}=1 \Rightarrow \operatorname{Tr}\{\rho\}^{2}=\sum_{x, y} \lambda_{x} \lambda_{y}=1$.
Consider the following chain of inequalities:

$$
\begin{align*}
\Rightarrow 0 & =\operatorname{Tr}\left\{\rho^{2}\right\}-\operatorname{Tr}\{\rho\}^{2} \tag{63}\\
& =\sum_{x} \lambda_{x}^{2}-\left[\sum_{x, y} \lambda_{x} \lambda_{y}\right] \tag{64}\\
& =\sum_{x} \lambda_{x}^{2}-\left[\sum_{x} \lambda_{x}^{2}+\sum_{x \neq y} \lambda_{x} \lambda_{y}\right] \tag{65}\\
& =\sum_{x \neq y} \lambda_{x} \lambda_{y} \tag{66}
\end{align*}
$$

Since $\lambda_{x}, \lambda_{y} \geq 0$, the only possibility to satisfy 66 is that $\lambda_{x}=1$ and $\lambda_{y}=0, \forall y \neq x$. Thus, $\operatorname{Tr}\left\{\rho^{2}\right\}=1$ implies that ρ is a pure state.

6.1 Purity of a Gaussian state

In this section, we calculate the purity for Gaussian states. From the Williamson decomposition of an n-mode Gaussian state as defined in 53 and from the fact that the purity is invariant under unitary transformations, we get

$$
\begin{equation*}
\operatorname{Tr}\left\{\rho^{2}\right\}=\prod_{j=1}^{n} \operatorname{Tr}\left\{\theta^{2}\left(\bar{n}_{j}\right)\right\} \tag{67}
\end{equation*}
$$

Consider the following chain of equalities:

$$
\begin{align*}
\operatorname{Tr}\left\{\theta^{2}\left(\bar{n}_{j}\right)\right\} & =\frac{1}{\left(\bar{n}_{j}+1\right)^{2}} \sum_{n=0}^{\infty}\left(\frac{\bar{n}_{j}}{\bar{n}_{j}+1}\right)^{2 n} \tag{68}\\
& =\frac{1}{\left(\bar{n}_{j}+1\right)^{2}} \frac{1}{1-\left(\bar{n}_{j} /\left(\bar{n}_{j}+1\right)\right)^{2}} \tag{69}\\
& =\frac{1}{\left(\bar{n}_{j}+1\right)^{2}-\bar{n}_{j}^{2}} \tag{70}\\
& =\frac{1}{2 \bar{n}_{j}+1} \tag{71}\\
& =\frac{1}{\nu_{j}}, \tag{72}
\end{align*}
$$

where ν_{j} denotes the symplectic eigenvalue of $\theta\left(\bar{n}_{j}\right)$. The first equality follows from the definition of a thermal state as defined in (48). The second equality follows from the sum of an infinite geometric series.

Therefore,

$$
\begin{align*}
\operatorname{Tr}\left\{\rho^{2}\right\} & =\prod_{j=1}^{n} \frac{1}{\nu_{j}} \tag{73}\\
& =\sqrt{\prod_{j=1}^{n} \frac{1}{\nu_{j}^{2}}} \tag{74}\\
& =\frac{1}{\sqrt{\prod_{j=1}^{n} \nu_{j}^{2}}} \tag{75}\\
& =\frac{1}{\operatorname{Det}(\sigma)} \tag{76}
\end{align*}
$$

The last equality follows from (26) and from the fact that for any symplectic matrix $S, \operatorname{Det}(S)=1$. Therefore, the purity of a Gaussian state is

$$
\begin{equation*}
\operatorname{Tr}\left\{\rho^{2}\right\}=\frac{1}{\sqrt{\operatorname{Det}(\sigma)}} \tag{77}
\end{equation*}
$$

which implies that a Gaussian state is pure if and only if $\operatorname{Det}(\sigma)=1$. Since $\nu_{j} \geq 1$, an equivalent condition for the purity of a Gaussian state is that all symplectic eigenvalues are equal to one.

7 Entropy of a Gaussian state

In this section, we find an expression for the von Neumann entropy of a Gaussian state.
The von Neumann entropy of a quantum state ρ is defined as

$$
\begin{equation*}
S(\rho) \equiv-\operatorname{Tr}\{\rho \ln \rho\} \tag{78}
\end{equation*}
$$

We begin by expressing a thermal state with the mean photon number \bar{n} in the following form:

$$
\begin{align*}
\theta(\bar{n}) & =\frac{1}{\bar{n}+1} \sum_{n=0}^{\infty}\left(\frac{\bar{n}}{\bar{n}+1}\right)^{n}|n\rangle\langle n| \tag{79}\\
& =\frac{1}{\bar{n}+1}\left(\frac{\bar{n}}{\bar{n}+1}\right)^{\hat{n}} . \tag{80}
\end{align*}
$$

Consider the following chain of equalities:

$$
\begin{align*}
-\operatorname{Tr}\{\theta(\bar{n}) \ln \theta(\bar{n})\} & =-\operatorname{Tr}\left\{\theta(\bar{n}) \ln \frac{1}{\bar{n}+1}\left(\frac{\bar{n}}{\bar{n}+1}\right)^{\hat{n}}\right\} \tag{81}\\
& =-\operatorname{Tr}\left\{\theta(\bar{n}) \ln \left(\frac{1}{\bar{n}+1}\right)\right\}-\operatorname{Tr}\left\{\theta(\bar{n}) \hat{n} \ln \left(\frac{\bar{n}}{\bar{n}+1}\right)\right\} \tag{82}\\
& =\ln (\bar{n}+1)-\ln \left(\frac{\bar{n}}{\bar{n}+1}\right) \operatorname{Tr}\{\theta(\bar{n}) \hat{n}\} \tag{83}\\
& =\ln (\bar{n}+1)-\ln \left(\frac{\bar{n}}{\bar{n}+1}\right) \bar{n} \tag{84}\\
& =(\bar{n}+1) \ln (\bar{n}+1)-\bar{n} \ln \bar{n} \tag{85}\\
& \equiv g(\bar{n}) \tag{86}
\end{align*}
$$

From unitary invariance and additivity of the von Neumann entropy, we get

$$
\begin{equation*}
S(\rho)=S\left(\bigotimes_{j=1}^{n} \theta\left(\bar{n}_{j}\right)\right) \tag{87}
\end{equation*}
$$

where ρ is an n-mode Gaussian state as defined in (53). Therefore,

$$
\begin{align*}
S(\rho) & =\sum_{j=1}^{n} S\left(\theta\left(\bar{n}_{j}\right)\right) \tag{88}\\
& =\sum_{j=1}^{n} g\left(\bar{n}_{j}\right) \tag{89}
\end{align*}
$$

We now derive an alternative formula for the von Neumann entropy of faithful Gaussian states. Let

$$
\begin{align*}
\rho & =\frac{1}{\sqrt{\operatorname{Det}[(\sigma+i \Omega) / 2)]}} \exp \left(-\frac{1}{2}(\hat{r}-\bar{r})^{T} H(\hat{r}-\bar{r})\right) \tag{90}\\
& =\hat{D}_{-\bar{r}}\left[\frac{\exp \left(-\frac{1}{2} \hat{r}^{T} H \hat{r}\right)}{\sqrt{\operatorname{Det}[(\sigma+i \Omega) / 2)]}}\right] \hat{D}_{\bar{r}} \tag{91}
\end{align*}
$$

and let

$$
\begin{equation*}
\rho_{0}=\frac{\exp \left(-\frac{1}{2} \hat{r}^{T} H \hat{r}\right)}{\sqrt{\operatorname{Det}[(\sigma+i \Omega) / 2)]}} . \tag{92}
\end{equation*}
$$

Then from unitary invariance of the von Neumann entropy, we get

$$
\begin{align*}
S(\rho) & =S\left(\rho_{0}\right) \tag{93}\\
& =-\operatorname{Tr}\left\{\rho_{0} \ln \rho_{0}\right\} \tag{94}\\
& =-\operatorname{Tr}\left\{\rho_{0} \ln \frac{\exp \left(-\frac{1}{2} \hat{r}^{T} H \hat{r}\right)}{\sqrt{\operatorname{Det}[(\sigma+i \Omega) / 2]}}\right\} \tag{95}\\
& =-\operatorname{Tr}\left\{\rho_{0} \ln \frac{1}{\sqrt{\operatorname{Det}[(\sigma+i \Omega) / 2]}}\right\}-\operatorname{Tr}\left\{\rho_{0} \ln \exp \left(-\frac{1}{2} \hat{r}^{T} H \hat{r}\right)\right\} \tag{96}\\
& =\frac{1}{2} \ln \operatorname{Det}[(\sigma+i \Omega) / 2]+\frac{1}{2} \operatorname{Tr}\left\{\rho_{0} \hat{r}^{T} H \hat{r}\right\} . \tag{97}
\end{align*}
$$

We now focus on the second term of the aforementioned equation.

$$
\begin{align*}
\operatorname{Tr}\left\{\rho_{0} \hat{r}^{T} H \hat{r}\right\} & =\operatorname{Tr}\left\{\rho_{0} \sum_{j, k} \hat{r}_{j} H_{j, k} \hat{r}_{k}\right\} \tag{98}\\
& =\sum_{j, k} H_{j, k} \operatorname{Tr}\left\{\rho_{0} \hat{r}_{j} \hat{r}_{k}\right\} \tag{99}\\
& =\frac{1}{2} \sum_{j, k} H_{j, k} \operatorname{Tr}\left\{\rho_{0}\left(\left\{\hat{r}_{j}, \hat{r}_{k}\right\}+\left[\hat{r}_{j}, \hat{r}_{k}\right]\right)\right\} \tag{100}\\
& =\frac{1}{2} \sum_{j, k} H_{j, k}\left(\sigma_{j, k}+i \Omega_{j, k}\right) \tag{101}\\
& =\frac{1}{2} \sum_{j, k} H_{j, k} \sigma_{j, k}-\frac{i}{2} \sum_{j, k} H_{j, k} \Omega_{k, j} \tag{102}\\
& =\frac{1}{2} \operatorname{Tr}\{H \sigma\}-\frac{i}{2} \operatorname{Tr}\{H \Omega\} \tag{103}\\
& =\frac{1}{2} \operatorname{Tr}\{H \sigma\}, \tag{104}
\end{align*}
$$

where we used the fact that $\operatorname{Tr}\{H \Omega\}=0$, which holds because H is symmetric and Ω is antisymmetric.

Therefore,

$$
\begin{equation*}
S(\rho)=\frac{1}{2} \ln \operatorname{Det}[(\sigma+i \Omega) / 2]+\frac{1}{4} \operatorname{Tr}\{H \sigma\} . \tag{105}
\end{equation*}
$$

Moreover, from (24) it follows that

$$
\begin{equation*}
S(\rho)=\frac{1}{2} \ln \operatorname{Det}[(\sigma+i \Omega) / 2]+\frac{1}{2} \operatorname{Tr}\{\operatorname{arccoth}(i \Omega \sigma) i \Omega \sigma\} . \tag{106}
\end{equation*}
$$

This latter expression is valid for pure Gaussian states, with the expression $\operatorname{Tr}\{\operatorname{arccoth}(i \Omega \sigma) i \Omega \sigma\}$ understood in a limiting sense.

References

[Ser17] Alessio Serafini. Quantum Continuous Variables: A Primer of Theoretical Methods. CRC Press, 2017.

