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1 Overview

In this lecture, we work mostly with single-mode bosonic quantum systems. We first formally
define photon-number states (also known as Fock states). We then introduce the annihilation and
creation operators in Section 2.2 and the quadrature operators in Section 2.3. Then we study the
existence of normalized eigenvectors for the introduced operators in Section 2.4. We end this lecture
by developing the background for multiple-mode systems in Section 3.

2 Single-mode systems

A mode, informally, refers to a well defined degree of freedom of the system. An example of a single-
mode bosonic quantum system is a photonic degree of freedom with a well defined polarization or
frequency. Mathematically, a bosonic mode is described by a separable Hilbert space (that is, a
Hilbert space that admits a countable orthonormal basis) equipped with canonical operators.

2.1 Photon-number states

Recall the Kronecker functions discussed earlier in Lecture 2 in the context of l2(N) space. Analo-
gous to this, let us define the set {|n〉}∞n=0 of photon-number states, which form a countable basis
set for the separable Hilbert state. In second quantization, photon-number states correspond to
the number of photons in a single mode of a bosonic system, that is, the number of photons in the
system with particular frequency and a particular polarization. Since the photon-number states
form a basis set for the separable Hilbert state, any state can be represented in terms of these
states.

2.2 Annhilation and creation operators

Now, let us first define the annihilation operator by its action on the photon-number basis:

â |n〉 =
√
n |n− 1〉 ∀n ≥ 1, (1)

â |0〉 = 0. (2)
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From this, we deduce that matrix elements of the annihilation operator in the photon number basis
are given as

〈m| (â |n〉) =
√
n δm,n−1 ∀n ≥ 1. (3)

〈m| (â |n〉) = 0, for n = 0. (4)

Proposition 1. The annihilation operator â is an unbounded operator.

Proof. The operator norm is defined as

‖â‖ = sup
‖φ‖=‖ψ‖=1

| 〈φ| â |ψ〉 | (5)

Choose |φ〉 = |n− 1〉, and |ψ〉 = |n〉. Then,

| 〈φ| â |ψ〉 | =
√
n. (6)

By taking the limit n→∞, we find that

sup
‖φ‖=‖ψ‖=1

| 〈φ| â |ψ〉 | ≥ lim
n→∞

√
n =∞. (7)

So we conclude that sup‖φ‖=‖ψ‖=1 | 〈φ| â |ψ〉 | =∞.

Let us now define the creation operator â† as the adjoint of the annihilation operator â. We
recover the action of the creation operator on |n〉, from the properties that we have established for
the annhilation operator. Consider that

〈m|
(
â† |n〉

)
= (â |m〉)† |n〉 =

√
m δm−1,n. (8)

Set m = n+ 1. Then,
〈
n+ 1

∣∣â†n〉 =
√
n+ 1. Since

〈
m
∣∣â†n〉 = 0 for m 6= n+ 1, this implies

â† |n〉 =
√
n+ 1 |n+ 1〉 ∀n ≥ 0. (9)

We can prove that the creation operator is also unbounded by following an argument similar to the
one for the annihilation operator.

Now, we obtain the canonical commutation relation (CCR) for the annihilation and creation oper-
ators: [

â, â†
]

= Î , (10)

where the Î is the identity operator for the separable Hilbert space. Consider the action of
[
â, â†

]
on an arbitrary number state |n〉:[

â, â†
]
|n〉 =

(
ââ† − â†â

)
|n〉 = |n〉 ∀n ≥ 0, (11)

where we have skipped some algebraic steps. Since this holds for an orthonormal basis, we conclude
that

[
â, â†

]
= Î. Similarly, we can obtain that

[
â†, â

]
= −Î ,

[
â†, â†

]
= 0 and [â, â] = 0. We can

then capture these CCR in a matrix as[ [
â, â†

]
[â, â][

â†, â†
] [

â†, â
]] =

[
1 0
0 −1

]
⊗ Î = σz ⊗ Î ,
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It is easy to obtain the following:
â†â |n〉 = n |n〉 . (12)

So, the photon-number states |n〉 are eigenstates of â†â = n̂ with eigenvalue n. Therefore, we can
write

n̂ =
∞∑
n=0

n |n〉〈n| . (13)

The operator n̂ is known as the photon-number operator.

2.3 Position and Quadrature operators

Let us now define the position and momentum quadrature operators as

x̂ =
â+ â†√

2
, p̂ =

â− â†√
2i

. (14)

By definition, these are Hermitian operators and can be compactly written as[
x̂
p̂

]
=

1√
2

[
1 1
−i i

] [
â
â†

]
. (15)

By rearrangement, we obtain the following:[
â
â†

]
=

1√
2

[
1 i
1 −i

] [
x̂
p̂

]
. (16)

The quadrature operators x̂ and p̂ are unbounded since â and â† are unbounded. From the com-
mutation relations of â and â†, we can work out the commutation relations of x̂ and p̂. The CCR
of the quadrature operators can then be embedded in a matrix as follows:[

[x̂, x̂] [x̂, p̂]
[p̂, x̂] [p̂, p̂]

]
= i

[
0 1
−1 0

]
⊗ Î . (17)

2.4 Eigenvectors of x̂, p̂, â, â†

In this section, we show that x̂, p̂, and â† do not have normalized eigenvectors, and that the coherent
states (which we define later) are the normalized eigenvectors of the annihilation operator.

Proposition 2. The quadrature operators x̂ and p̂ do not have normalized eigenvectors.

Proof. Suppose that |ψ〉 is an eigenvector of x̂. That is,

x̂ |ψ〉 = λ |ψ〉 , (18)

where λ ∈ R. Now, we know that [x̂, p̂] = iÎ. Next, consider that

〈ψ| [x̂, p̂] |ψ〉 = 〈ψ| x̂p̂− p̂x̂ |ψ〉 (19)

= 〈ψ|λp̂− p̂λ |ψ〉 = 0. (20)

However, 〈ψ| iÎ |ψ〉 = i. This leads to a contradiction, and implies that x̂ cannot have a normalized
eigenvector.
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Following a similar argument, we can prove that p̂ cannot have a normalized eigenvectors.

Proposition 3. The creation operator â† does not have a normalized eigenvector.

Proof. Suppose that there exists a normalized eigenvector |ψ〉 such that

â† |ψ〉 = µ |ψ〉 ∀µ ∈ C. (21)

We can write |ψ〉 =
∑∞

n=0 cn |n〉 for cn ∈ C such that
∑∞

n=0 |cn|2 = 1. Then, it follows from (21)
that

â† |ψ〉 =
∞∑
n=0

cnâ
† |n〉 =

∞∑
n=0

cn
√
n+ 1 |n+ 1〉 (22)

=
∞∑
n=0

cnµ |n〉 . (23)

This implies that c0µ = 0, c0 = c1µ, c1
√

2 = c2µ, and so on. If µ 6= 0, then c0 = 0 and this implies
cn = 0, where n ∈ N. If µ = 0, then also c0 = 0 and this implies cn = 0, where n ∈ N. Therefore,
the creation operator â† does not have a normalized eigenvector.

Interestingly, the annihilation operator â has normalized eigenstates, which are called coherent
states. Each of the coherent states are parametrized by α ∈ C. That is, â |α〉 = α |α〉.

Proposition 4. The annihilation operator â has coherent states |α〉 as its normalized eignevectors.

Proof. Let us suppose that a coherent state |α〉 is an eigenstate of â. Expanding |α〉 in terms of
the number basis, we obtain

|α〉 =
∞∑
n=0

cn |n〉 for cn ∈ C. (24)

Now apply â to |α〉:

â |α〉 = â
∞∑
n=0

cn |n〉 (25)

=

∞∑
n=0

cnâ |n〉 (26)

=
∞∑
n=1

cn
√
n |n− 1〉 . (27)

To be an eigenstate, |α〉 should satisfy the following relation:

â |α〉 = α |α〉 (28)
∞∑
n=1

cn
√
n |n− 1〉 =

∞∑
n=0

α cn |n〉 . (29)

Equating coefficients term by term gives the following recursion relation:

cn
√
n = α cn−1, (30)
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which gives us the following:

cn =
αn√
n!
c0. (31)

Then,

|α〉 = c0

∞∑
n=0

αn√
n!
|n〉 . (32)

From the normalization condition, we can fix the value of c0. We thus have,

1 = 〈α|α〉 (33)

= |c0|2
∞∑

n,n′=0

α∗nαn
′

√
n!n′!

〈
n
∣∣n′〉 (34)

= |c0|2
∞∑
n=0

|α|2n

n!
(35)

= |c0|2e|α|
2
. (36)

This implies

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉 , (37)

concluding the proof.

3 Multiple modes

Earlier in this lecture, we have been concentrating on single mode systems. Now, we move on
to study multiple-mode bosonic Hilbert spaces. By tensoring together several separable Hilbert
spaces, each corresponding to a bosonic mode, we get a multiple-mode bosonic Hilbert space. Each
mode j is equipped with canonical operators x̂j and p̂j for j ∈ {1, . . .m}, where m is the number
of modes. If j 6= k, then [x̂j , p̂k] = 0, since these operators are acting on different Hilbert spaces.
Now, we can encode these canonical commutation relations as

[x̂j , p̂k] = iδj,kÎ . (38)

To write the relations compactly, we define the vector of the canonical operators as

r̂ =


x̂1
p̂1
...
x̂n
p̂n

 (39)

Then, the CCR can be encoded in the following matrix:

[
r̂, r̂†

]
=

[x̂1, x̂1] [x̂1, p̂1] . . .
[p̂1, x̂1] [p̂1, p̂1] . . .

...
...

. . .

 = iΩ, (40)
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where Ω =
⊕n

j=1 Ω1 = In ⊗ Ω1 with

Ω1 =

[
0 1
−1 0

]
. (41)

Ω is a special matrix, called the symplectic form, which realizes a symplectic inner product via
xTΩ y. Some properties of the symplectic form are the following:

• ΩT = −Ω

• ΩTΩ = −Ω2 = I2n. That is, Ω is an orthogonal matrix.

• Commutator matrix iΩ is involutory, that is, (iΩ)2 = I.

One can also use a different order for vectors of canonical operators as

ŝ =



x̂1
...
x̂n
p̂1
...
p̂n


(42)

In this case, [
ŝ, ŝ†

]
= iJ, (43)

where

J =

[
0n In
−In 0n

]
= Ω1 ⊗ In. (44)

Another convention often used in the literature is the following:

â =


â1
â†1
...
ân
â†n

 . (45)

Then, â = Ur̂, where the unitary U is defined as

U =

n⊕
j=1

u = In ⊗ u, (46)

with

u =
1√
2

[
1 i
1 −i

]
. (47)
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Then, [
â, â†

]
=
[
Ur̂, r̂†U †

]
(48)

= U
[
r̂, r̂†

]
U † (49)

= Ui (In ⊗ Ω1)U
† (50)

= i (In ⊗ u) (In ⊗ Ω1)
(
In ⊗ u†

)
(51)

= iIn ⊗ uΩ1u
† (52)

= In ⊗ σz (53)

=

n⊕
i=1

σz. (54)

This implies, [
â, â†

]
= In ⊗ σz. (55)

One can also define another order

â =


â1
â†1
...
ân
â†n

 . (56)

However, we do not go into the details of this convention.
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