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What do the second law of thermodynamics,

have in common?



These physical limitations are a consequence of a
fundamental principle, called

DECREASE OF QUANTUM RELATIVE ENTROPY

What is that?

G. Lindblad, Communications in Mathematical Physics, 40(2):147-151, June 1975.



Background

- A guantum state is described by a density operator
acting on a Hilbert space:

D(H)=4{p:p>0and Tr(p) =1}

. A quantum evolution (channel) is a linear, completely
positive trace-preserving map

N(p) = E:Ai,OAZ-L where ZA,}LAZ- =/



Physical Realization of a
Quantum Channel

Stinespring representation theorem

Any quantum channel can be realized by adjoining a bath
to the system, unitarily interacting them, and discarding

the bath system:

N(p) = Trp{Usg(ps @ 75)ULg}

W. F. Stinespring. Proceedings of the American Mathematical Society, 6(2):211-216, April 1955.



Quantum Relative Entropy

Let p be a density operator and o be a positive semi-
definite operator (o could be a density operator).

Then the quantum relative entropy is defined as
D(pllo) = Tr{p[log p — log o]}

Quantum relative entropy is a fundamental entropic
measure of distinguishability.

H. Umegaki. Kodai Mathematical Seminar Reports, 14(2):59-85, 1962.



Decrease of Quantum
Relative Entropy

Most important property

Quantum relative entropy does not increase with respect
to a quantum channel:

D(pllo) = DN (p)|N (o))
Interpretation: If you're trying to distinguish p from o,

then it does not help to apply a channel first before trying
to distinguish them.

G. Lindblad, Communications in Mathematical Physics, 40(2):147-151, June 1975.



“Mother of All Entropies”

Many entropies follow from quantum relative entropy:

von Neumann entropy:

S(p) = —Tr{plogp} = —D(p||I)
Conditional entropy of pas:
S(A|B), = S(pa) —S(pB)
= —D(paB|lls ® pB)
Mutual information of pas:
I(A; B), = S(pa) + S(pg) — S(pas)
= D(paBllpa ® pB)



Relative Entropy in Thermodynamics

Suppose we have states p and o and a Hamiltonian H

Helmholtz free energy is a thermodynamic potential
measuring useful work at temperature T:

F(p) = (H), = ksTS(p)

Second law states that a transition from p to o is possible
via a thermal operation only if

F(p) > F(o)



2nd Law and Relative Entropy

Rewrite free energy as relative entropy to a thermal state
F(p) =Tr{pH} + kT Tr{plog p}
= kpT [D(p||T) — log Z]
where 7 = exp{—H/kgT}/Z
So if there is a thermal operation such that
T(p)=0, T(r)=T
then necessarily D(,OHT) > D(T(p) HT(T))

M. J. Donald. Journal of Statistical Physics, 49(1):81-87, October 1987.



Uncertainty Principle

The original Heisenberg-Robertson uncertainty relation
has the following form:

AXAZ 2 5|, Z)lv)

for two observables X and Z and a quantum state W>
Interpretation in terms of two different experiments

Deficiency: In finite dim., there always exists a |¢) for
which the lower bound vanishes, even if Xand Z are
incompatible (thus rendering the bound trivial)

W. Heisenberq. Zeitschrift fur Physik, 43:172-198, 1927.
H. P. Robertson. Physical Review, 34:163, 1929.



Entropic Uncertainty

Solution: Use entropies to quantify uncertainty:

H(X)+ H(Z)> —logc

where ¢ := max ‘<¢z‘¢az>|2
L

)

H(X) is the Shannon entropy of the distribution resulting
from measuring X on state |¢), and similar for H(Z)

The parameter ¢ quantifies measurement
incompatibility and does not depend on |¢)

H. Maassen and J. B. M. Uffink. Physical Review Letters, 60(12):1103-1106, March 1988.



Relative Entropy and
Entropic Uncertainty

How to prove? Use relative entropy!

Let M x and M  be measurement channels for X and Z

D(y||Mx (v))
D(Mz()|[Mz(Mx(¥)))
—H(Z) —logc

H(X) =

P.J. Coles, L. Yu, and M. Zwolak. arXiv:1105.4865, May 2011.



Communication

Alice ; Bob

ol |=
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In a communication protocol, Alice wishes to send a message
to Bob using a noisy channel N many times.

- They make use of an encoding and decoding in order to
achieve the capacity of the channel (maximum possible rate)



Holevo Bound

In 1973, Holevo proved a bound, essential to our
understanding of capacity of quantum channels

. There is a simple proof using quantum relative entropy

Let pums denote the state of the message system and the
channel output. Then

I(M;B), = D(pmsllpm ® pB)
> DDy (pvB)llpavr © D (pB))
— I(M; M)

From there, we can relate to success probability and rate,
and obtain an upper bound on capacity

A.S. Holevo. Problems of Information Transmission, 9:177-183, 1973.



Refining the Decrease of
Quantum Relative Entropy

- Given the fundamental role of the inequality
D(pllo) = DN (p)[|N (o))

it is natural to ask further questions about it
- Whatif the inequality is saturated?

- Whatifitis nearly saturated?



Saturation Case

The inequality is a statement of irreversibility:
D(pllo) = DN (p)[|N (o))

So, might suspect that saturation implies reversibility

Petz proved this:

D(pllo) = DN (p)[|N (o))
if and only if
R:(RoN)(p) = p and

(RoN)(o) =0

D. Petz. Communications in Mathematical Physics, 105(1):123-131, March 1986.
D. Petz. Quarterly Journal of Mathematics, 39(1):97- 108, 1988.




Saturation Case (ctd.)

. Petz proved even more: The recovery map R can take
an explicit form, now known as the Petz recovery map

R(X) := oL/2 N T ([N(U)]—l/ZX[N(U)]—l/Z) 51/2

- The Petz recovery map always perfectly reverses the
action of Non o:

R(N(o)) =0

- And it perfectly reverses the action of N on p if
D(pllo) = DN (p)|N(0))

D. Petz. Communications in Mathematical Physics, 105(1):123-131, March 1986.
D. Petz. Quarterly Journal of Mathematics, 39(1):97- 108, 1988.



Near Saturation Case?

- It would be far more useful in applications to

characterize the near saturation case

. Based on Petz’s results, it is natural to wonder whether

D(pllo) = DN (p)||N (o))
implies that

RN (p)) = p

- We cannot prove this at the moment, but can get
something nearly as good...



Quantum Fidelity

How to characterize the near-saturation case?

Define the fidelity between two states w and 7 as
F<w7 7-) _— H \/5\/?”%

Reduces to usual squared overlap for pure states

Always between zero and one:

Equal to one if and only if w =Tand
Equal to zero if and only if w orthogonal to

A. Uhlmann. Reports on Mathematical Physics, 9(2):273-279, 1976.



Near Saturation Case

Theorem: There exists a real number t such that
D(pllo) — DN (p)|N (o)) > —log F(p,(R" o N)(p))
where Rt is a Petz recovery map:
RYX) := Uyt 0o R oUn (o). —t)(X)

with the defined as Observe that

Uy 1(X) 1= Wt X w4 Uy 1(w) = w

M. M. Wilde. Accepted in Proceedings of the Royal Society A, arXiv:1505.04661.



Interpretation of Result

- What does the theorem tell us?

- Any rotated Petz recovery map perfectly recovers o:
R'(N (o)) =0

- whileif D(pl|o)) ~ D(N(p) | (o))

- then RY(N(p)) = p

- The parameter t could depend on the state p, so the
same recovery map does not work universally for all p

M. M. Wilde. Accepted in Proceedings of the Royal Society A, arXiv:1505.04661.



How to prove this?

Proof involves two ingredients:

1) Rényi entropies
2) Hadamard'’s three-line theorem

- The approach is called the method of complex

interpolation (basic tool for non-commutative L, spaces)



Primer on Renyi Entropies
Rényi entropy:

Sa(p) = 11— o
where o € (0,1) U (1, 00)

Y

log || p||

Key Properties:

lim S, (p) = S(p)

a—1



Rényi Relative Entropy

Rényi relative entropy:

20x —a) /2«
Da(pllo) := —— log||gti=/2pli))

where o € (0,1) U (1, 00)

ey properties: im Do (pl}o) = D(pl|o)

Dy /2(pllo) = —log F(p, o)
D.(pllo) = Dg(p|lo) for a > B

M. Muller-Lennert, F. Dupuis, O. Szehr, S. Fehr, M. Tomamichel. J. Mathematical Physics, 54(12):122203, Dec. 2013.
M. M. Wilde, A. Winter, D. Yang. Communications in Mathematical Physics, 331(2):593-622, October 2014.



Renyi “Monster” Quantity

Rényi generalization of a relative entropy difference:

~ 2 o y N
Aa(p, O',N) = Jlog |‘([N(p)]_7[j\[(0-)]7 ®]E)UO'_7101/2

204.

where a € (0,1)U (1,00) and & :=(a—1)/«a
Key Properties:
lim A, (p,0,A) = D(pllo) — DIN()|N (@)

Al/Q(/@ U7N) — —lOgF(,O, (RON)(IO))

K. P. Seshadreesan, M. Berta, and M. M. Wilde. Accepted in Journal of Physics A. arXiv:1410.1443.



Hadamard 3-Line Theorem

- Llet S:={2€C:0<Re{z} <1}

Im{z}

. Suppose f(z) holomorphic on
the interior of S and
continuous on its boundary

- Can bound f(z) anywhere
inside S in terms of the Re(z)
maximum values of f(z) on
the boundaries Re{z} =0
and Re{z} =1

(consequence of maximum modulus principle)



Hadamard 3-Line Theorem

Formal statement:

Theorem Hadamard’s three-line theorem Let f : S — C be a bounded function that is
holomorphic in the interior of S and continuous on the boundary. For k= 0,1 let

My, = sup | f(k + it)|.
teR

Then for every 0 < 0 < 1 we have | f(0)| < My~ MY

Can extend to a statement for operator-valued functions:

Theorem  Let
S={ze€C:0<Re{z} <1}, (2.1)

and let L (H) be the space of bounded linear operators acting on a Hilbert space H. Let G : S — L(H) be a

bounded map that is holomorphic on the interior of S and continuous on the boundary.' Let 6 € (0,1) and
define pg by
1 1—6 0
_|_

po po p1
where po,p1 € [1,00]. For k=0,1 define My, = sup,cg |G (k +it)||, . Then

(2.2)

IG O]

p

L < My—oMy. (2.3)



Proof Conclusion

Can use these tools to conclude the following inequality
forall a € (1/2,1)

Ao(p, o, N) > ~logsup F(p, (R" o N)(p))

Taking the limit a = 1 then gives that there exists a real
number t such that

D(pllo) — DIN(p)IIN(0)) > —log F(p, (R" o N)(p))

M. M. Wilde. Accepted in Proceedings of the Royal Society A, arXiv:1505.04661.



Universal Recovery

Recent improvement: Can pick the recovery map to be
explicit and universal (exclusively a function of N and o)

R(X) = /OO it 2(Cosh(7;t) + 1) RAX)

We then get the following inequality holding for all p:

D(plle) = D(N(p)||IN(0)) > —log F(p, (R o N)(p))

— OO

Follows from a strengthening of Hadamard 3-line due to
Hirschman

M. Junge, R. Renner, D. Sutter, M. M. Wilde, A. Winter. In preparation.



Consequences

Refinement of 2nd law: if difference of free energies is small,
then can reverse transformation approximately without using
any energy (arXiv:1506.08145)

Uncertainty principle: can add in another term related to how
well one can reverse one of the measurements (unpublished)

Holevo bound: if difference between mutual information
before and after measurement is small, then states are
approximately commuting (arXiv:1505.04661)

Other applications in entanglement theory, quantum
correlations, quantum measurements, Fisher information,
open system dynamics (exploring with Siddhartha Das)



