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What do the second law of thermodynamics,

the Heisenberg uncertainty principle,

and the capacity of communication channels

have in common? 



These physical limitations are a consequence of a 
fundamental principle, called 

Decrease of Quantum Relative Entropy 

What is that?

G. Lindblad, Communications in Mathematical Physics, 40(2):147–151, June 1975. 



Background
• A quantum state is described by a density operator 

acting on a Hilbert space: 
 

• A quantum evolution (channel) is a linear, completely 
positive trace-preserving map 
 
                                                               whereN (⇢) =

X

i

Ai⇢A
†
i

D(H) = {⇢ : ⇢ � 0 and Tr(⇢) = 1}

X

i

A†
iAi = I



Physical Realization of a 
Quantum Channel

Stinespring representation theorem 

Any quantum channel can be realized by adjoining a bath 
to the system, unitarily interacting them, and discarding 
the bath system:

N (⇢) = TrB{USB(⇢S ⌦ ⌧B)U
†
SB}

W. F. Stinespring. Proceedings of the American Mathematical Society, 6(2):211–216, April 1955.



Quantum Relative Entropy

Let ρ be a density operator and σ be a positive semi-
definite operator (σ could be a density operator). 

Then the quantum relative entropy is defined as 
 

Quantum relative entropy is a fundamental entropic 
measure of distinguishability.

D(⇢k�) = Tr{⇢[log ⇢� log �]}

H. Umegaki. Kodai Mathematical Seminar Reports, 14(2):59–85, 1962.



Decrease of Quantum 
Relative Entropy

Most important property 

Quantum relative entropy does not increase with respect 
to a quantum channel: 

Interpretation: If you’re trying to distinguish ρ from σ, 
then it does not help to apply a channel first before trying 
to distinguish them.

D(⇢k�) � D(N (⇢)kN (�))

G. Lindblad, Communications in Mathematical Physics, 40(2):147–151, June 1975. 



“Mother of All Entropies”
Many entropies follow from quantum relative entropy: 

von Neumann entropy: 

 
Conditional entropy of  ρAB: 

 
 
 
Mutual information of ρAB: 

S(⇢) = �Tr{⇢ log ⇢} = �D(⇢kI)

S(A|B)⇢ = S(⇢AB)� S(⇢B)

= �D(⇢ABkIA ⌦ ⇢B)

I(A;B)⇢ = S(⇢A) + S(⇢B)� S(⇢AB)

= D(⇢ABk⇢A ⌦ ⇢B)



Relative Entropy in Thermodynamics
Suppose we have states ρ and σ and a Hamiltonian H 

Helmholtz free energy is a thermodynamic potential 
measuring useful work at temperature T: 

 
 
Second law states that a transition from ρ to σ is possible 
via a thermal operation only if 

F (⇢) = hHi⇢ � kBTS(⇢)

F (⇢) � F (�)



2nd Law and Relative Entropy
Rewrite free energy as relative entropy to a thermal state 

 
     where 

So if there is a thermal operation such that 

 
then necessarily

F (⇢) = Tr{⇢H}+ kBT Tr{⇢ log ⇢}
= kBT [D(⇢k⌧)� logZ]

⌧ = exp{�H/kBT}/Z

T (⇢) = �, T (⌧) = ⌧

D(⇢k⌧) � D(T (⇢)kT (⌧))

M. J. Donald. Journal of Statistical Physics, 49(1):81-87, October 1987.



Uncertainty Principle
The original Heisenberg-Robertson uncertainty relation 
has the following form: 

for two observables X and Z and a quantum state 

Interpretation in terms of two different experiments 

Deficiency: In finite dim., there always exists a        for 
which the lower bound vanishes, even if X and Z are 
incompatible (thus rendering the bound trivial)

�X�Z � 1

2
|h |[X,Z]| i|

| i

| i

W. Heisenberg. Zeitschrift fur Physik, 43:172–198, 1927. 
H. P. Robertson. Physical Review, 34:163, 1929.



Entropic Uncertainty
Solution: Use entropies to quantify uncertainty: 

where 

H(X) is the Shannon entropy of the distribution resulting 
from measuring X on state       , and similar for H(Z) 

The parameter c quantifies measurement 
incompatibility and does not depend on 

H(X) +H(Z) � � log c

c := max

x,z

|h 
z

|�
x

i|2

| i

H. Maassen and J. B. M. Uffink. Physical Review Letters, 60(12):1103–1106, March 1988.

| i



Relative Entropy and 
Entropic Uncertainty

How to prove? Use relative entropy! 

Let              and              be measurement channels for X and Z 

P. J. Coles, L. Yu, and M. Zwolak. arXiv:1105.4865, May 2011. 

MX MZ

H(X) = D( kMX( ))

� D(MZ( )kMZ(MX( )))

� �H(Z)� log c



Communication

• In a communication protocol, Alice wishes to send a message 
to Bob using a noisy channel N many times. 

• They make use of an encoding and decoding in order to 
achieve the capacity of the channel (maximum possible rate)

496 CHAPTER 20. CLASSICAL COMMUNICATION

Figure 20.3: The most general protocol for classical communication over a quantum channel. Alice selects
some message M and encodes it as a quantum codeword for input to many independent uses of the noisy
quantum channel. Bob performs some POVM over all of the channel outputs to determine the message that
Alice transmits.

classical message m that she would like to transmit to Bob—she selects from a set of mes-
sages {1, . . . , |M|}. Let M denote the random variable corresponding to Alice’s choice of
message, and let |M| denote its cardinality. She then prepares some state ⇢mA0n as input to
the many independent uses of the channel—the input systems are n copies of the channel
input system A0. She transmits this state over n independent uses of the channel N , and
the state at Bob’s receiving end is

N⌦n (⇢mA0n) . (20.10)

Bob has some decoding POVM {⇤m} that he can exploit to determine which message Alice
transmits. Figure 20.3 depicts such a general protocol for classical communication over a
quantum channel.

Let M 0 denote the random variable for Bob’s estimate of the message. The probability
that he determines the correct message m is as follows:

Pr {M = m|M 0 = m} = Tr
�
⇤mN⌦n (⇢mA0n)

 
, (20.11)

and thus the probability of error for a particular message m is

pe (m) ⌘ 1� Pr {M = m|M 0 = m} (20.12)

= Tr
�
(I � ⇤m)N⌦n (⇢mA0n)

 
. (20.13)

The maximal probability of error for any coding scheme is then

p⇤e ⌘ max
m2M

pe (m) . (20.14)

The rate C of communication is

C ⌘ 1

n
log2 |M|+ �, (20.15)

where � is some arbitrarily small positive number, and the code has " error if p⇤e  ". A rate
C of classical communication is achievable if there exists an (n,C � �, ") code for all �, " > 0
and su�ciently large n.

c�2015 Mark M. Wilde—This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Unported License



Holevo Bound
• In 1973, Holevo proved a bound, essential to our 

understanding of capacity of quantum channels 

• There is a simple proof using quantum relative entropy 

• Let ρMB denote the state of the message system and the 
channel output. Then 

• From there, we can relate to success probability and rate, 
and obtain an upper bound on capacity

I(M ;B)⇢ = D(⇢MBk⇢M ⌦ ⇢B)

= I(M ;M 0)

A. S. Holevo. Problems of Information Transmission, 9:177–183, 1973.

� D(DB!M 0(⇢MB)k⇢M ⌦DB!M 0(⇢B))



Refining the Decrease of 
Quantum Relative Entropy

• Given the fundamental role of the inequality 
 
 
it is natural to ask further questions about it 

• What if the inequality is saturated? 

• What if it is nearly saturated?

D(⇢k�) � D(N (⇢)kN (�))



Saturation Case
The inequality is a statement of irreversibility: 

 
So, might suspect that saturation implies reversibility 

Petz proved this:

D(⇢k�) � D(N (⇢)kN (�))

D(⇢k�) = D(N (⇢)kN (�))

9R : (R �N )(⇢) = ⇢ and

(R �N )(�) = �

if and only if

D. Petz. Communications in Mathematical Physics, 105(1):123–131, March 1986. 
D. Petz. Quarterly Journal of Mathematics, 39(1):97– 108, 1988.



Saturation Case (ctd.)
• Petz proved even more: The recovery map R can take 

an explicit form, now known as the Petz recovery map 

• The Petz recovery map always perfectly reverses the 
action of N on σ: 

• And it perfectly reverses the action of N on ρ if 

R(X) := �1/2N †
⇣
[N (�)]�1/2X[N (�)]�1/2

⌘
�1/2

R(N (�)) = �

D(⇢k�) = D(N (⇢)kN (�))

D. Petz. Communications in Mathematical Physics, 105(1):123–131, March 1986. 
D. Petz. Quarterly Journal of Mathematics, 39(1):97– 108, 1988.



Near Saturation Case?
• It would be far more useful in applications to 

characterize the near saturation case 

• Based on Petz’s results, it is natural to wonder whether  
 
 
implies that 

• We cannot prove this at the moment, but can get 
something nearly as good…

D(⇢k�) ⇡ D(N (⇢)kN (�))

R(N (⇢)) ⇡ ⇢



Quantum Fidelity
• How to characterize the near-saturation case? 

• Define the fidelity between two states ω and τ as 

• Reduces to usual squared overlap for pure states 

• Always between zero and one: 
      Equal to one if and only if ω = τ and  
       Equal to zero if and only if ω orthogonal to τ

F (!, ⌧) := k
p
!
p
⌧k21

A. Uhlmann. Reports on Mathematical Physics, 9(2):273–279, 1976.



Near Saturation Case
Theorem: There exists a real number t such that 

where Rt is a rotated Petz recovery map: 

with the unitary rotations defined as

D(⇢k�)�D(N (⇢)kN (�)) � � logF (⇢, (Rt �N )(⇢))

Rt(X) := (U�,t �R � UN (�),�t)(X)

U!,t(X) := !itX!�it

M. M. Wilde. Accepted in Proceedings of the Royal Society A, arXiv:1505.04661.

U!,t(!) = !
Observe that



Interpretation of Result
• What does the theorem tell us? 

• Any rotated Petz recovery map perfectly recovers σ: 

• while if   

• then 

• The parameter t could depend on the state ρ, so the 
same recovery map does not work universally for all ρ

Rt(N (�)) = �

D(⇢k�) ⇡ D(N (⇢)kN (�))

Rt(N (⇢)) ⇡ ⇢

M. M. Wilde. Accepted in Proceedings of the Royal Society A, arXiv:1505.04661.



How to prove this?

• Proof involves two ingredients: 
 
1) Rényi entropies 
2) Hadamard’s three-line theorem 

• The approach is called the method of complex 
interpolation (basic tool for non-commutative Lp spaces)



Primer on Rényi Entropies
Rényi entropy: 

where  

Key Properties:

↵ 2 (0, 1) [ (1,1)

S↵(⇢) :=
↵

1� ↵
log k⇢k↵

lim
↵!1

S↵(⇢) = S(⇢)

S↵(⇢)  S�(⇢) for ↵ � �



Rényi Relative Entropy
Rényi relative entropy: 

where  

Key Properties:

↵ 2 (0, 1) [ (1,1)

D↵(⇢k�) :=
2↵

↵� 1

log

����(1�↵)/2↵⇢1/2
���
2↵

D↵(⇢k�) � D�(⇢k�) for ↵ � �

lim
↵!1

D↵(⇢k�) = D(⇢k�)

D1/2(⇢k�) = � logF (⇢,�)

M. Muller-Lennert, F. Dupuis, O. Szehr, S. Fehr, M. Tomamichel. J. Mathematical Physics, 54(12):122203, Dec. 2013. 
M. M. Wilde, A. Winter, D. Yang. Communications in Mathematical Physics, 331(2):593-622, October 2014. 



Rényi “Monster” Quantity
Rényi generalization of a relative entropy difference: 

where                                            and   

Key Properties:

↵ 2 (0, 1) [ (1,1)

e
�↵(⇢,�,N ) :=

2

↵0 log
���([N (⇢)]�

↵0
2
[N (�)]

↵0
2 ⌦ IE)U��↵0

2 ⇢1/2
���
2↵

.

↵0 := (↵� 1)/↵

lim
↵!1

e�↵(⇢,�,N ) = D(⇢k�)�D(N (⇢)kN (�))

e
�1/2(⇢,�,N ) = � logF (⇢, (R �N )(⇢))

K. P. Seshadreesan, M. Berta, and M. M. Wilde. Accepted in Journal of Physics A. arXiv:1410.1443.



Hadamard 3-Line Theorem
• Let 

• Suppose f(z) holomorphic on 
the interior of S and 
continuous on its boundary 

• Can bound f(z) anywhere 
inside S in terms of the 
maximum values of f(z) on 
the boundaries Re{z} = 0  
and Re{z} = 1 
(consequence of maximum modulus principle)

S := {z 2 C : 0  Re{z}  1}



Hadamard 3-Line Theorem
Formal statement: 

Can extend to a statement for operator-valued functions:

5

III. RIESZ-THORIN THEOREM

Most of the proofs in this paper are based on the theory of complex interpolation, especially
the Riesz-Thorin theorem for which we refer to the textbook [12] and lecture notes [13, 14]. This
theory has already found applications in quantum information theory [15, 16]. Here to obtain
self-contained proofs, instead of directly referring to this theory we prefer to give a proof of the
Riesz-Thorin theorem in the special case that is more relevant to quantum information theory.
This proof is based on Hadamard’s three-line theorem (see [17, page 33]).

Define

S = {z ∈ C : 0 ≤ Re z ≤ 1},

where Re z ∈ R denotes the real part of the complex number z ∈ C.

Theorem 1 (Hadamard’s three-line theorem [17]) Let f : S → C be a bounded function that is
holomorphic in the interior of S and continuous on the boundary. For k = 0, 1 let

Mk = sup
t∈R

|f(k + it)|.

Then for every 0 ≤ θ ≤ 1 we have |f(θ)| ≤ M1−θ
0 Mθ

1 .

A map F : S → L(H) is call holomorphic (continuous, bounded) if the corresponding functions
to matrix entries is holomorphic (continuous, bounded). The following theorem is a generalization
of Hadamard’s three-line theorem.

Theorem 2 Let F : S → L(H) be a bounded map that is holomorphic in the interior of S and
continuous on the boundary. Let σ ∈ L(H) be positive definite. Assume that 1 ≤ p0 ≤ p1 ≤ ∞ and
for 0 < θ < 1 define p0 ≤ pθ ≤ p1 by

1

pθ
=

1− θ

p0
+

θ

p1
. (12)

For k = 0, 1 define

Mk = sup
t∈R

∥F (k + it)∥pk ,σ.

Then we have

∥F (θ)∥pθ,σ ≤ M1−θ
0 Mθ

1 .

Proof: Let X be such that ∥X∥p′θ ,σ = 1 and ∥F (θ)∥pθ ,σ = ⟨X†, f(θ)⟩σ. Using ∥X∥p′θ ,σ =

∥Γ
1/p′θ
σ (X)∥p′θ = 1, the singular value decomposition of Γ

1/p′θ
σ (X) has the form

Γ
1/p′θ
σ (X) = UD

1

p′
θ V,

where U, V are unitary and D is diagonal with non-negative entries and tr(D) = 1. Define

X(z) = Γ
−( 1−z

p′
0

+ z
p′
1

)

σ

(

UD
( 1−z

p′
0

+ z
p′
1

)
V

)

= σ
−( 1−z

2p′
0

+ z
2p′

1

)
(

UD
( 1−z

p′
0

+ z
p′
1

)
V

)

σ
−( 1−z

2p′
0

+ z
2p′

1

)
.

Theorem 1 Let
S ⌘ {z 2 C : 0  Re {z}  1} , (2.1)

and let L (H) be the space of bounded linear operators acting on a Hilbert space H. Let G : S ! L (H) be a
bounded map that is holomorphic on the interior of S and continuous on the boundary.1 Let ✓ 2 (0, 1) and
define p

✓

by
1

p
✓

=
1� ✓

p
0

+
✓

p
1

, (2.2)

where p
0

, p
1

2 [1,1]. For k = 0, 1 define M
k

= sup
t2R kG (k + it)k

p

k

. Then

kG (✓)k
p

✓

 M1�✓

0

M✓

1

. (2.3)

3 Bounds for a di↵erence of quantum relative entropies

This section presents our main result (Theorem 4), which is a refinement of the monotonicity of quantum
relative entropy. For the lower bounds given in this paper, we take states ⇢ and � and the channel N to be
as given in the following definition:

Definition 2 Let ⇢ be a density operator and let � be a positive semi-definite operator, each acting on a
finite-dimensional Hilbert space H

S

and such that supp (⇢) ✓ supp (�). Let N : L (H
S

) ! L (H
B

) be a
quantum channel with finite-dimensional output Hilbert space H

B

.

A Rényi generalization of a relative entropy di↵erence is defined as [21]

e�
↵

(⇢,�,N ) ⌘ 2↵

↵� 1
log

�

�

�

⇣

[N (⇢)](1�↵)/2↵ [N (�)](↵�1)/2↵ ⌦ I
E

⌘

U
S!BE

�(1�↵)/2↵⇢1/2
�

�

�

2↵

, (3.1)

where here and throughout this paper log denotes the natural logarithm, ↵ 2 (0, 1)[(1,1), and U
S!BE

is an
isometric extension of the channelN . That is, U

S!BE

is a linear isometry satisfying Tr
E

{U
S!BE

(·)
S

U†
S!BE

} =

N (·) and U†
S!BE

U
S!BE

= I
S

. All isometric extensions of a channel are related by an isometry acting on
the environment system E, so that the definition in (3.1) is invariant under any such choice. Recall also that
the adjoint N † of a channel is given in terms of an isometric extension U as N † (·) = U † ((·)⌦ I

E

)U . This
can be used to verify that the definition given in (3.1) is the same as the definition given in [21].

The following limit is known for positive definite operators [21, Section 6] and we provide a proof in
Appendix A that it holds for ⇢, �, and N as given in Definition 2:

lim
↵!1

e�
↵

(⇢,�,N ) = D (⇢k�)�D (N (⇢) kN (�)) . (3.2)

It is one reason why we say that e�
↵

(⇢,�,N ) is a Rényi generalization of a relative entropy di↵erence,
in addition to the fact that e�

↵

(⇢,�,N ) � 0 for all ↵ 2 [1/2, 1) [ (1,1) [29]. The quantum relative
entropy D (!k⌧) is defined for a density operator ! and a positive semi-definite operator ⌧ as [30] D (!k⌧) ⌘
Tr {! [log! � log ⌧ ]}, whenever supp (!) ✓ supp (⌧), and by convention, it is defined to be +1 otherwise. It
is monotone with respect to quantum channels [7, 8] in the following sense: D (⇢k�)�D (N (⇢) kN (�)) � 0.
We refer to the quantity on the right-hand side of (3.2) as a “relative entropy di↵erence.”

For ↵ = 1/2, observe that

e�
1/2

(⇢,�,N ) = � log
�

�

�

⇣

[N (⇢)]1/2 [N (�)]�1/2 ⌦ I
E

⌘

U
S!BE

�1/2⇢1/2
�

�

�

2

1

= � logF
�

⇢,RP

�,N (N (⇢))
�

.

(3.3)

1A map G : S ! L(H) is holomorphic (continuous, bounded) if the corresponding functions to matrix entries are holomorphic
(continuous, bounded).

3



Proof Conclusion
Can use these tools to conclude the following inequality 
for all  

Taking the limit α → 1 then gives that there exists a real 
number t such that  

D(⇢k�)�D(N (⇢)kN (�)) � � logF (⇢, (Rt �N )(⇢))

e
�↵(⇢,�,N ) � � log sup

t
F (⇢, (Rt �N )(⇢))

↵ 2 (1/2, 1)

M. M. Wilde. Accepted in Proceedings of the Royal Society A, arXiv:1505.04661.



Universal Recovery
Recent improvement: Can pick the recovery map to be 
explicit and universal (exclusively a function of N and σ) 

 
We then get the following inequality holding for all ρ: 

Follows from a strengthening of Hadamard 3-line due to 
Hirschman

R(X) :=

Z 1

�1
dt

⇡

2(cosh(⇡t) + 1)

Rt
(X)

D(⇢k�)�D(N (⇢)kN (�)) � � logF (⇢, (R �N )(⇢))

M. Junge, R. Renner, D. Sutter, M. M. Wilde, A. Winter. In preparation.



Consequences
• Refinement of 2nd law: if difference of free energies is small, 

then can reverse transformation approximately without using 
any energy (arXiv:1506.08145) 

• Uncertainty principle: can add in another term related to how 
well one can reverse one of the measurements (unpublished) 

• Holevo bound: if difference between mutual information 
before and after measurement is small, then states are 
approximately commuting (arXiv:1505.04661) 

• Other applications in entanglement theory, quantum 
correlations, quantum measurements, Fisher information, 
open system dynamics (exploring with Siddhartha Das)


