On the quantum, classical and total amount of correlations in a quantum state

Berry Groisman, Sandu Popescu, and Andreas Winter

March 9, 2011

Presentation prepared for COMP598 - Quantum Shannon Theory by Jan Florjanczyk

History (forward and backwards)

- Classical Landauer's thermodynamic principle: amount of information stored is equal to amount of work necessary to erase it.
- Previous work Oppenheim and H³ showed that the work achievable by two parties on a bipartite state is less than work on the whole state.
- Schumacher's "entropy exchange" will be the quantity of choice to measure the work in a quantum state.

- Calculated the amount necessary to erase all correlations in a quantum state, as well as quantum and classical correlations individually.
- Operational interpretation (and straightforward proof) of strong subadditivity of mutual information.

A simple example

A simple example

Begin with the state \rightarrow

$$|\Phi^{+}
angle = rac{1}{\sqrt{2}} \left(|00
angle^{AB} + |11
angle^{AB}
ight).$$

Apply \mathbb{I}^{AB} or $Z^A \otimes \mathbb{I}^B$ with equal probability o

$$\rho = \frac{1}{2}|00\rangle\langle 00|^{AB} + \frac{1}{2}|11\rangle\langle 11|^{AB}.$$

Apply \mathbb{I}^{AB} or $X^A \otimes \mathbb{I}^B$ with equal probability \to

$$\rho' = \pi^A \otimes \pi^B$$
.

Thus 2 bits are required to erase the total correlations in the state (1 classical, 1 pure entanglement).

Definition (Randomizing map)

Let R be as follows:

$$R: \rho^{AB} o \sum_{i=1}^{N} p_i \left(U_i^A \otimes V_i^B \right) \rho \left(U_i^A \otimes V_i^B \right)^{\dagger}$$

 $R \in -$ decorrelates a state ρ^{AB} if there exists $\omega^A \otimes \omega^B$ such that

$$\left\| R(\rho) - \omega^A \otimes \omega^B \right\|_1 \leq \varepsilon$$

We call R a COLUR map. If all $V_i = \mathbb{I}$ then it is a A-LUR map. If all $U_i = \mathbb{I}$ then it is a B-LUR map. The composition of A-LUR and B-LUR is a LUR map.

Definition (Entropy exchange)

For a purification $|\psi\rangle\langle\psi|^{ZAB}$ of ρ^{AB} and the map R, we define

$$S_e(R^{AB},
ho^{AB}) := S\left(\left(\mathbb{I}^Z \otimes R^{AB}\right)|\psi
angle\langle\psi|
ight)$$

First note that

$$\log N \geq H(p) \geq S_e(R, \rho).$$

Lemma (Size of COLUR maps)

Any ε – decorrelating COLUR map R on A^nB^n has the lower bound

$$S_e(R, \rho^{\otimes n}) \geq n(I(A; B) - O(\varepsilon))$$

The above can be proved entirely via concavity of entropy and Fannes inequality

Lemma (Size of A-LUR maps)

There exists an ε – decorrelating A-LUR map R on A^nB^n with the upper bound

$$\log N \le n(I(A;B) + O(\varepsilon))$$

Chernoff bound

Lemma (Chernoff bound)

Le X_1 , ..., X_N be i.i.d. random variables taking values in the operator interval $[0; \mathbb{I}]$ and with expectation $\mathbb{E} X \geq \mu \mathbb{I}$. Then for $0 \leq \varepsilon \leq 1$,

$$\Pr\left\{\frac{1}{N}\sum_{i}X_{i}\not\in[(1-\varepsilon)\mathbb{E}X;(1-\varepsilon)\mathbb{E}X]\right\}\leq\exp\left(-N\frac{\mu\varepsilon^{2}}{2}\right).$$

Our random variable is U_i and $N = 2^{n(I(A;B)+4\varepsilon)}$ is sufficient to make this bound ≤ 1 .

Together, the two lemmas give an extremely robust statement

Theorem

The amount of local noise needed to turn ρ^{AB} into a product state is measured by

$$\sup_{\varepsilon} \lim_{n \to \infty} \inf_{n \to \infty} \frac{1}{n} \min \left\{ S_{e}(R, \rho^{\otimes n}) : R, \ \varepsilon - COLUR \right\}$$

$$= \sup_{\varepsilon} \lim_{n \to \infty} \inf_{n \to \infty} \frac{1}{n} \min \left\{ \log N : R, \ \varepsilon - A - LUR \right\}$$

$$= I(A; B)$$

"Smallest R for worst ε in the asymptotic limit"

Moving freely between COLURs and LURs

Implementing the correlated unitary randomizing map requires providing i to Alice and Bob via the state

$$\gamma = \sum_{i} p_{i} |i\rangle\langle i|^{A} \otimes |i\rangle\langle i|^{B}$$

We consider the least cost of erasing $\rho\otimes\gamma$ minus the cost of erasing γ . We know this to be I(A;B) by the theorem. However, this implies catalysis does not increase the cost.

Subadditivity

Clearly the green process simulates the red process $\Longrightarrow I(A:BC) \ge I(A:B)$

Quantum correlations

Classical correlations

We define two quantities, the first is well-motivated, the second is desirable,

$$Cl_{\text{er}}(\rho) := \sup_{\varepsilon>0} \limsup_{n\to\infty} \sup_{\|\sigma-R(\rho^{\otimes n}\|_1 \le \varepsilon} \frac{1}{n} I(A; B)_{\sigma}$$

$$Cl_{\text{er}}^{\star}(\rho) := \sup_{\varepsilon>0} \limsup_{n\to\infty} \sup_{\|\sigma-T(\rho^{\otimes n}\|_1 < \varepsilon} \frac{1}{n} I(A; B)_{\sigma}$$

where T is any local CPTP map.

Remark For pure states it is shown that $E_{\rm er}(\psi) = Cl_{\rm er}^*(\psi) = \frac{1}{2}C_{\rm er}(\psi) = E(\psi)$. However for mixed states the optimal paths of erasure do not necessarily coincide.

Open questions

■ Do the cost of entanglement erasure ($E_{\rm er}$) and optimistic cost ($\underline{E}_{\rm er}$) coincide asymptotically?

$$\sup_{\varepsilon>0} \limsup_{n\to\infty} \inf_{\|\sigma-R(\rho^{\otimes n}\|_1\leq \varepsilon} \frac{1}{n} S(\sigma) - S(\rho) = \limsup_{n\to\infty} \inf_{\sigma=R(\rho^{\otimes n}} \frac{1}{n} S(\sigma) - S(\rho)$$

- Is E_{er} monotonic under local operations and classical communication? Is it convex?
- Is $E_{\rm er}$ a bound on the distillable entanglement and is $Cl_{\rm er}$ a bound on the distillable secret key?