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Background

The depolarizing channel

∆λ(ρ) = λρ+
1− λ

d
I

Minimum output entropy

Hmin(Ψ) = inf
ρ
H(Ψ(ρ))

p-norm and maximal p-norm

‖A‖p = (Tr {Ap})1/p vp(Ψ) = sup
ρ

‖Ψ(ρ)‖p
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Background

It is known that

d

dp
‖ρ‖p

∣

∣

∣

∣

∣

p=1

= −H(ρ)

and hence
d

dp
vp(Ψ)

∣

∣

∣

∣

∣

p=1

= −Hmin(Ψ)

The additivity of the minimum output entropy is
equivalent to the additivity of the Holevo information.
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Background

Let B = {|ψi〉} be an orthonormal basis, and let
Ei = |ψi〉 〈ψi|. The dephasing channel corresponding to
B is

Φλ(ρ) = λρ+ (1− λ)

d
∑

i=1

EiρEi

We say a vector is uniform if all entries have the same
absolute value.
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Main Results

Theorem 1 The classical capacity of the quantum
depolarizing channel ∆λ is χ(∆λ).

Theorem 2 For any channel Ψ

χ(∆λ ⊗Ψ) = χ(∆λ) + χ(Ψ)

Theorem 3 For any channel Ψ, and any p ≥ 1

vp(∆λ ⊗Ψ) = vp(∆λ)vp(Ψ)

and hence

Hmin(∆λ ⊗Ψ) = Hmin(∆λ) +Hmin(Ψ)
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Three Lemmas

Lemma 1 For any state τAB, let U be any unitary
matrix, and τ ′AB = (U ⊗ I)τAB(U † ⊗ I).

‖(∆λ ⊗Ψ)(τAB)‖p = ‖(∆λ ⊗Ψ)(τ ′AB)‖p

Lemma 2 Convex decomposition of the depolarizing
channel

∆λ(ρ) =

2d2(d+1)
∑

n=1

cnU
†
nΦ

(n)
λ (ρ)Un

The Capacity of the Quantum Depolarizing Channel – p. 6



Three Lemmas

Lemma 3 For any state τAB, define

τB(i) = TrA
{

(Ei ⊗ I)τAB
}

Then

‖(Φλ ⊗ I)(τAB)‖p ≤ d(1−1/p)vp(∆λ)

(

d
∑

i=1

Tr
{

τB(i)

}p
)1/p
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Proof of Theorem 3

vp(∆λ ⊗Ψ) = vp(∆λ)vp(Ψ)

By Lemma 2, it’s sufficient to show

‖
(

Φ
(n)
λ ⊗Ψ

)

(ρAB)‖p ≤ vp(∆λ)vp(Ψ)

Apply Lemma 3 with

τAB = (I ⊗Ψ)(ρAB)

τB(i) = Ψ
(

ρB(2)

)

= Ψ
(

TrA
{

(Ei ⊗ I)ρAB
})
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The Convex Decomposition

Intermediate channel

Ωλ(ρ) = ∆λ(ρ) +
1− λ

d
(ρ− diag(ρ))

Define diagonal matrix G with Gkk = exp
(

2πik
d

)

.

Lemma 4

∆λ(ρ) =
λd

1 + (d− 1)λ
Ωλ(ρ)+

1− λ

1 + (d− 1)λ

1

d

d
∑

k=1

(G†)kΩλ(ρ)G
k
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The Convex Decomposition

Define diagonal matrix H with Hkk = exp
(

2πik2

2d2

)

.

|θ〉 = 1√
d

∑d
i=0 |i〉.

For k = 1, . . . , d, and a = 1, . . . , 2d2, define
∣

∣ψk,a

〉

= GkHa |θ〉

Ek,a =
∣

∣ψk,a

〉 〈

ψk,a

∣

∣
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The Convex Decomposition

Define the dephasing channels

Φ
(a)
λ (ρ) = λρ+ (1− λ)

d
∑

k=1

Ek,aρEk,a

Lemma 5

Ωλ(ρ) =
1

2d2

2d2
∑

a=1

Φ
(a)
λ

Sufficient to show that

1

2d

2d2
∑

a=1

d
∑

k=1

Ek,aρEk,a = I + ρ− diag(ρ)
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The Dephasing Channel

Only left to show Lemma 3, for all τAB, define

τB(i) = TrA
{

(Ei ⊗ I)τAB
}

Then

‖(Φλ ⊗ I)(τAB)‖p ≤ d(1−1/p)vp(∆λ)

(

d
∑

i=1

Tr
{

τB(i)

}p
)1/p

Calculations. . .
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The Dephasing Channel

Input state defined on Cd×d ⊗Cd′×d′.

Rewrite

ρAB =
(

√

ρAB
)†√

ρAB

√

ρAB = (V1, . . . , Vd)

Where Vi is a dd′ × d′ matrix.

Calculations. . .
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Conclusion and Future Work

Proof of a long-conjectured property for depolarizing
channel.

Depolarizing channel as a convex combination of
simpler channels.

Future work: Finding explicit constructions of channels
that violate additivity.
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