The Capacity of the Quantum Depolarizing Channel

Christopher King

Presented by Shen Chen Xu

The Capacity of the Quantum Depolarizing Channel - p. 1

Background

The depolarizing channel

$$\Delta_{\lambda}(\rho) = \lambda \rho + \frac{1-\lambda}{d}I$$

Minimum output entropy

$$H_{\min}(\Psi) = \inf_{\rho} H(\Psi(\rho))$$

p-norm and maximal *p*-norm

$$||A||_{p} = (\operatorname{Tr} \{A^{p}\})^{1/p} \qquad v_{p}(\Psi) = \sup_{\rho} ||\Psi(\rho)||_{p}$$

Background

It is known that

$$\frac{d}{dp} \|\rho\|_p \Big|_{p=1} = -H(\rho)$$

and hence

$$\frac{d}{dp}v_p(\Psi) \bigg|_{p=1} = -H_{\min}(\Psi)$$

The additivity of the minimum output entropy is equivalent to the additivity of the Holevo information.

Background

• Let $\mathcal{B} = \{|\psi_i\rangle\}$ be an orthonormal basis, and let $E_i = |\psi_i\rangle \langle \psi_i|$. The dephasing channel corresponding to \mathcal{B} is

$$\Phi_{\lambda}(\rho) = \lambda\rho + (1-\lambda)\sum_{i=1}^{d} E_{i}\rho E_{i}$$

We say a vector is uniform if all entries have the same absolute value.

Main Results

- **Theorem 1** The classical capacity of the quantum depolarizing channel Δ_{λ} is $\chi(\Delta_{\lambda})$.
- **•** Theorem 2 For any channel Ψ

$$\chi(\Delta_{\lambda} \otimes \Psi) = \chi(\Delta_{\lambda}) + \chi(\Psi)$$

• Theorem 3 For any channel Ψ , and any $p \ge 1$

$$v_p(\Delta_\lambda \otimes \Psi) = v_p(\Delta_\lambda)v_p(\Psi)$$

and hence

$$H_{\min}(\Delta_{\lambda} \otimes \Psi) = H_{\min}(\Delta_{\lambda}) + H_{\min}(\Psi)$$

Three Lemmas

• Lemma 1 For any state τ^{AB} , let U be any unitary matrix, and $\tau'^{AB} = (U \otimes I)\tau^{AB}(U^{\dagger} \otimes I)$.

$$\|(\Delta_{\lambda} \otimes \Psi)(\tau^{AB})\|_{p} = \|(\Delta_{\lambda} \otimes \Psi)(\tau'^{AB})\|_{p}$$

Lemma 2 Convex decomposition of the depolarizing channel

$$\Delta_{\lambda}(\rho) = \sum_{n=1}^{2d^2(d+1)} c_n U_n^{\dagger} \Phi_{\lambda}^{(n)}(\rho) U_n$$

Three Lemmas

Lemma 3 For any state τ^{AB} , define

$$\tau_{(i)}^B = \operatorname{Tr}_A\left\{ (E_i \otimes I) \tau^{AB} \right\}$$

Then

$$\|(\Phi_{\lambda} \otimes I)(\tau^{AB})\|_{p} \le d^{(1-1/p)}v_{p}(\Delta_{\lambda}) \left(\sum_{i=1}^{d} \operatorname{Tr}\left\{\tau_{(i)}^{B}\right\}^{p}\right)^{1/p}$$

Proof of Theorem 3

$$v_p(\Delta_\lambda \otimes \Psi) = v_p(\Delta_\lambda)v_p(\Psi)$$

By Lemma 2, it's sufficient to show

$$\|\left(\Phi_{\lambda}^{(n)}\otimes\Psi\right)(\rho^{AB})\|_{p}\leq v_{p}(\Delta_{\lambda})v_{p}(\Psi)$$

Apply Lemma 3 with

$$\tau^{AB} = (I \otimes \Psi)(\rho^{AB})$$
$$\tau^{B}_{(i)} = \Psi\left(\rho^{B}_{(2)}\right) = \Psi\left(\operatorname{Tr}_{A}\left\{(E_{i} \otimes I)\rho^{AB}\right\}\right)$$

The Convex Decomposition

Intermediate channel

$$\Omega_{\lambda}(\rho) = \Delta_{\lambda}(\rho) + \frac{1-\lambda}{d} \left(\rho - \operatorname{diag}(\rho)\right)$$

• Define diagonal matrix G with $G_{kk} = \exp\left(\frac{2\pi ik}{d}\right)$.

Lemma 4

$$\Delta_{\lambda}(\rho) = \frac{\lambda d}{1 + (d-1)\lambda} \Omega_{\lambda}(\rho) + \frac{1-\lambda}{1+(d-1)\lambda} \frac{1}{d} \sum_{k=1}^{d} (G^{\dagger})^{k} \Omega_{\lambda}(\rho) G^{k}$$

The Convex Decomposition

• Define diagonal matrix H with $H_{kk} = \exp\left(\frac{2\pi i k^2}{2d^2}\right)$.

•
$$|\theta\rangle = \frac{1}{\sqrt{d}} \sum_{i=0}^{d} |i\rangle.$$

• For $k = 1, \ldots, d$, and $a = 1, \ldots, 2d^2$, define

$$\left|\psi_{k,a}\right\rangle = G^{k}H^{a}\left|\theta\right\rangle$$

$$E_{k,a} = \left|\psi_{k,a}\right\rangle \left\langle\psi_{k,a}\right|$$

The Convex Decomposition

Define the dephasing channels

$$\Phi_{\lambda}^{(a)}(\rho) = \lambda \rho + (1-\lambda) \sum_{k=1}^{d} E_{k,a} \rho E_{k,a}$$

Lemma 5

$$\Omega_{\lambda}(\rho) = \frac{1}{2d^2} \sum_{a=1}^{2d^2} \Phi_{\lambda}^{(a)}$$

Sufficient to show that

$$\frac{1}{2d} \sum_{a=1}^{2d^2} \sum_{k=1}^d E_{k,a} \rho E_{k,a} = I + \rho - \text{diag}(\rho)$$

The Dephasing Channel

Only left to show Lemma 3, for all τ^{AB} , define

$$\tau_{(i)}^B = \operatorname{Tr}_A\left\{ (E_i \otimes I) \tau^{AB} \right\}$$

Then

$$\|(\Phi_{\lambda} \otimes I)(\tau^{AB})\|_{p} \le d^{(1-1/p)}v_{p}(\Delta_{\lambda}) \left(\sum_{i=1}^{d} \operatorname{Tr}\left\{\tau_{(i)}^{B}\right\}^{p}\right)^{1/p}$$

Calculations...

The Dephasing Channel

• Input state defined on $\mathbb{C}^{d imes d} \otimes \mathbb{C}^{d' imes d'}$.

Rewrite

$$\rho^{AB} = \left(\sqrt{\rho^{AB}}\right)^{\dagger} \sqrt{\rho^{AB}}$$

$$\sqrt{\rho^{AB}} = (V_1, \dots, V_d)$$

Where V_i is a $dd' \times d'$ matrix.

Calculations...

Conclusion and Future Work

- Proof of a long-conjectured property for depolarizing channel.
- Depolarizing channel as a convex combination of simpler channels.
- Future work: Finding explicit constructions of channels that violate additivity.