
COMP 598 Winter 2011
Homework 4

Due Thursday 17 March 2011.

First part: Exercises 11.5.1, 11.5.2, 11.5.5, 11.6.2, 11.6.6, 11.7.4, 11.7.5, 11.9.2, 11.9.5,
12.4.1, 12.4.4, 12.5.5, 14.1.6 in From Classical Information Theory to Quantum Shannon
Theory

Second part: The below exercises

1. There is a task known as trade-off coding, where a sender would like to transmit both
classical and quantum information to a receiver error-free in the asymptotic limit of
many channel uses. You will calculate the boundary of the classical-quantum trade-off
capacity region for a qubit dephasing channel (with some assistance). Recall that the
qubit dephasing channel accepts an input system A′ and outputs a system B according
to the following map:

∆p (ρ) = (1− p) ρ+ pZρZ.

Suppose Alice prepares states of the following form:

ρXAA
′ ≡ 1

2
|0〉 〈0|X ⊗ |φµ〉 〈φµ|AA

′
+

1

2
|1〉 〈1|X ⊗XA′ |φµ〉 〈φµ|AA

′
XA′

,

where
|φµ〉AA

′
≡ √µ |00〉AA

′
+
√

1− µ |11〉AA
′
,

and XA′
is a Pauli bit flip operator acting on register A′. Observe that X is a classical

register and A′ is a quantum register entangled with A for all µ where 0 < µ < 1.
The boundary of the capacity region is given by the rate pairs (I (X;B)σ , I (A〉BX)σ)
where

σXAB ≡ ∆
A′→B
p

(
ρXAA

′
)
.

Calculate all rate pairs for the boundary of the region as a function of µ and p. Bonus
points if you turn in a plot of the trade-off curve.

2. Suppose that we have an ensemble
{
pX (x) , ρBx

}
. Corresponding to this ensemble, there

are weak conditionally typical projectors that we denote as Π
Bn|xn

δ (see Section 14.2).
Prove the following operator inequality:∑

xn∈Xn

pXn (xn) Π
Bn|xn

δ ≤ ρ⊗n2n[H(B|X)+δ],

where ρ ≡
∑

x pX (x) ρx and the conditional quantum entropy isH (B|X) =
∑

x pX (x)H (ρx).

3. You will prove the converse part of the quantum capacity theorem in a few steps.
Here, we are assuming the existence of a good protocol (in the sense that the trace
distance between the actual state resulting from the protocol and the ideal state is
close). Then, we prove that the rate at which Alice can transmit quantum information
to Bob is bounded above by the coherent information of the channel. That is, we are
trying to obtain an upper bound on the quantum capacity of a quantum channel N .
Figure 1 should be helpful for visualizing, and it will be helpful to study the converse
proof in Section 19.3.2 for classical communication.
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Figure 1: The most general protocol for quantum communication (or, equivalently, entangle-
ment generation). Alice performs an encoding on her A1 system and then feeds the outputs
of the encoder into the inputs of the channels. Bob receives all of the channel outputs and
performs some decoding map. If the protocol is good, at the end, Alice and Bob should
share a state that is arbitrarily close in trace distance to a maximally entangled state.

(a) First argue that it is sufficient to consider upper bounding the rate at which Alice
can generate entanglement with Bob, rather than the rate at which Alice can
communicate quantum information to Bob. We’ll just consider that Alice has the
system R in Figure 1.

(b) Calculate the coherent information of a maximally entangled state with Schmidt
rank 2nE (so that E is the rate of entanglement generation).

(c) Ideally, the protocol generates a maximally entangled state with Bob. In reality,
it generates a state at time tf in Figure 1 that is close to the maximally entan-
gled state. Find an upper bound on the coherent information of the maximally
entangled state (one term in the upper bound should be the coherent information
of the actual state).

(d) Use the quantum data processing inequality to find a good upper bound on the
bound from part (c).

(e) Argue that the regularized coherent information of the channel is an upper bound
on the bound from part (d). (There is an opportunity for a bonus point here for
those who notice a subtlety with the encoder when obtaining this upper bound.)
If everything adds up, this should be our bound on the quantum capacity.

(f) Suppose that the channel is an erasure channel. Argue that the coherent informa-
tion of the channel is an upper bound on the quantum capacity (it actually turns
out to be equal to that channel’s quantum capacity).
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