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1 Overview

In the last lecture we derived formulas for various overlap measures of Gaussian states.

In this lecture we discuss quasiprobability distributions and characteristic functions to describe
Gaussian states. We will also discuss various properties of displacement operators and how they
can be used to describe any state.

2 Characteristic functions and Quasiprobability distributions

While Gaussian states can be described by their covariance matrix and mean vector, an alternative
way to visualize them is in the phase space. Wigner functions are well-known quasiprobability
distributions that can fully characterize a state. For Gaussian states, the Wigner function is non-
negative.

Any quantum mechanical process has three parts: state preparation, subsequent evolution through
a channel, and finally measurements. This can be captured via a quasi-probability distribution as

Tr[ΩN (ρ)] =

∫
W (Ω|λ)︸ ︷︷ ︸

Measurement

WN (λ|λ′)︸ ︷︷ ︸
Channel

Wρ(λ
′)︸ ︷︷ ︸

State

dλ dλ′ (1)

If each of the three terms of the integrand are positive, then it means that there is an underlying
classical description of the quantum physical experiment.

3 Displacement operators

Recall that we defined the displacement operator as

D̂−r = e−ir
TΩr̂ (2)

where

r =

(
x
p

)
(3)

Alternatively, we can define the displacement operator using complex numbers and mode creation
and annihilation operators as

D̂α = eαâ
†−α∗â (4)
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where

α =
x+ ip√

2
(5)

Then
D̂−r = D̂α (6)

Coherent states are displaced states of the vacuum as

D̂α|0〉 = |α〉 = e−
|α|2
2

∑
n

αn√
n!
|n〉 (7)

Successive displacements are equivalent to a single displacement up to an overall phase factor as

D̂αD̂β = e
1
2

(αβ∗−α∗β)D̂α+β (8)

This allows us to compute the overlap of two coherent states. The overlap of two coherent states
is always strictly positive and is given as

〈β|α〉 = 〈0|D̂−βD̂α|0〉 (9)

= 〈0|D̂α−β|0〉e
1
2

(αβ∗−α∗β) (10)

= 〈0|α− β〉e
1
2

(αβ∗−α∗β) (11)

= e−
1
2
|α−β|2e

1
2

(αβ∗−α∗β) (12)

Coherent states together form an overcomplete basis as

Î =
1

π

∫
d2α |α〉〈α| (13)

This fact can be used to evaluate the traces of trace-class operators. For any trace-class operator,
we have

Tr[Ô] =
∞∑
m=0

〈m|Ô|m〉 (14)

=

∞∑
m=0

〈m| 1
π

∫
d2α |α〉〈α|Ô|m〉 (15)

=
1

π

∫
d2α

∞∑
m=0

〈m|α〉〈α|Ô|m〉 (16)

=
1

π

∫
d2α

∞∑
m=0

〈α|Ô|m〉〈m|α〉 (17)

=
1

π

∫
C
d2α 〈α|Ô|α〉 (18)
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3.1 Mean vector of coherent states

The above result can be used to evaluate the mean vector and covariance matrix of a coherent
state. Alternatively, there is a simpler derivation:

Tr
[
x̂|α〉〈α|

]
= 〈α|x̂|α〉 (19)

= 〈α| â+ â†√
2
|α〉 (20)

=
〈α| (â|α〉) +

(
〈α|â†

)
|α〉

√
2

(21)

=
〈α|α|α〉+ 〈α|α∗|α〉√

2
(22)

=
2Re{α}√

2
(23)

Alternatively, we can use

Tr
[
x̂|α〉〈α|

]
= Tr

[
x̂D̂α|0〉〈0|D̂−α

]
(24)

= Tr
[
D̂−αx̂D̂α|0〉〈0|

]
(25)

= Tr
[
D̂rx̂D̂−r|0〉〈0|

]
(26)

= Tr
[
(x̂+ x)|0〉〈0|

]
(27)

= 〈0|x̂|0〉+ x (28)

= x (29)

=
√

2Re(α) (30)

Similarly, we can find the expectation value of momentum quadrature also. Thus we obtain that
for a coherent state |α〉, the mean vector r is

r =

(√
2Re(α)√
2Im(α)

)
, (31)

3.2 Covariance matrix of coherent states

We now calculate the covariance matrix of coherent states. We note that

Tr
[
x̂2|α〉〈α|

]
= Tr

[
x̂2D̂α|0〉〈0|D̂−α

]
(32)

= Tr
[
D̂rx̂

2D̂−r|0〉〈0|
]

(33)

= Tr
[
(x̂+ x)2|0〉〈0|

]
(34)

= Tr
[
(x̂2 + 2xx̂+ x2)|0〉〈0|

]
(35)

= 1/2 + x2 (36)
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Therefore we have
2 Tr

[
(x̂− x)2|α〉〈α|

]
= 1 (37)

Similarly, we can find the other covariance matrix elements also to find that the covariance matrix
σ is

σ =

(
1 0
0 1

)
. (38)

We note that the covariance matrix of coherent states is the same as that of the vacuum state.

3.3 Trace of a displacement operator

The displacement operator is not trace class, but it is useful to consider its trace in a generalized
sense as follows:

Tr[D̂(β)] = πδ2(β), β ∈ C, (39)

which turns out to be a key tool in continuous-variable quantum information.

To prove this, we will first find out 〈α|D̂(β)|α〉. This is

〈α|D̂(β)|α〉 = 〈0|D̂†(α)D̂(β)D̂(α)|0〉 (40)

= 〈0|D̂†(α)exp
(
βâ† − β∗â

)
D̂(α)|0〉 (41)

= 〈0|exp
[
D̂†(α)(βâ† − β∗â)D̂(α)

]
|0〉 (42)

= 〈0|exp
[
β(â† + α)− β∗(â+ α)

]
|0〉 (43)

Now we use the results that

D†(α)â†D(α) = â† + α∗, (44)

D†(α)âD(α) = â+ α (45)

so as to obtain

〈α|D̂(β)|α〉 = eβα
∗−β∗α〈0|D̂(β)|0〉 (46)

= eβα
∗−β∗α〈0|β〉 (47)

= eβα
∗−β∗αe−

1
2
|β|2 (48)

Using the above result, we can find an expression for the trace of a displacement operator as

Tr[D̂(β)] =
1

π

∫
d2α 〈α|D̂(β)|α〉 (49)

=
e−
|β|2
2

π

∫
d2α eβα

∗−β∗α (50)

To simplify, redefine
α = x+ iy, β = u+ iv, (51)
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so that βα∗ − β∗α = 2i(vx− uy). Now we have

Tr[D̂(β)] =
e−
|β|2
2

π

∫ ∫
dxdy e2ivx−2iuy (52)

=
e−
|β|2
2

π

∫
dx e2ivx

∫
dy e−2iuy (53)

=
e−
|β|2
2

π
2π δ(2v) 2π δ(2u) (54)

=
e−
|β|2
2

π
π2δ(v)δ(u) (55)

= πδ2(β) (56)

as the exponential factor e−
|β|2
2 is equal to one when the delta function is nonzero at β = 0.

3.4 Hilbert-Schmidt inner product of displacement operators

Now we will find the Hilbert-Schmidt inner product of displacement operators. Using the above
relation, this is

Tr[D̂(α)D̂(−β)] = e
1
2

(−αβ∗+α∗β)Tr[D̂(α− β)] (57)

= e
1
2

(−αβ∗+α∗β)πδ2(α− β) (58)

= πδ2(α− β) (59)

wherein again, we use the fact that the exponential factor e
1
2

(−αβ∗+α∗β) is equal to one when the
delta function is nonzero at α = β.

In terms of real variables, we can write this orthogonality relation as

Tr
[
D̂rD̂−s

]
= 2πδ2 (r − s) (60)

where

α =
xr + ipr√

2
, β =

xs + ips√
2

. (61)

Generalizing to n modes, the orthogonality relations are as follows:

Tr
[
D̂ (α) D̂

(
−β
)]

= πnδ2n(α− β), (62)

Tr
[
D̂rD̂−s

]
= (2π)nδ2n(r − s). (63)

4 Characteristic functions

We define the symmetrically ordered Weyl characteristic function of a state ρ as

χρ(α) = Tr[D̂(α)ρ] ∀α ∈ C (64)
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This characteristic function is finite for all α ∈ C if ρ is trace class. To see this we use the Hölder
inequality to have ∣∣∣Tr

[
D̂(α)ρ

]∣∣∣ ≤ ∥∥∥D̂(α)
∥∥∥
∞
‖ρ‖1 = ‖ρ‖1 <∞. (65)

Using the Weyl characteristic function, we can write the state as

ρ =
1

π

∫
d2α χρ(α)D̂(−α). (66)

To prove this, we note that

ρ =

[
1

π

∫
d2α |α〉〈α|

]
ρ

[
1

π

∫
d2β |β〉〈β|

]
(67)

=
1

π2

∫ ∫
d2α d2β 〈α|ρ|β〉 |α〉〈β|. (68)

So we only have to show that

|α〉〈β| = 1

π

∫
d2γ Tr

[
|α〉〈β|D̂γ

]
D̂−γ (69)

This can be rewritten as

|0〉〈0| = 1

π

∫
d2γ Tr

[
|α〉〈β|D̂γ

]
D̂−αD̂−γD̂β (70)

=
1

π

∫
d2γ 〈β − γ|α〉eγβ∗−γ∗βD̂−αD̂−γD̂β (71)

=
1

π

∫
d2γ e−

1
2
|β−α−γ|2D̂β−α−γ (72)

=
1

π

∫
d2γ e−

1
2
|γ|2D̂γ (73)

We will prove this in the next lecture.
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