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1 Overview

In the last lecture we derived the formulas for the Rényi entropies, purity, and the entropy of
Gaussian states.

In this lecture we derive the formulas for various overlap measures of two Gaussian states such
as Holevo fidelity, Uhlmann fidelity, Petz-Rényi relative entropy, and sandwiched Rényi relative
entropy.

2 Overlap formulas for Gaussian states

In quantum information, we are often interested in finding out how close two states are. A simple
overlap formula between two states ρ and τ is Tr[ρτ ]. More generally, we compute overlap formulas
of the following kind:

FH(ρ, τ) = Tr
[√
ρ
√
τ
]2

(1)

F (ρ, τ) =
∥∥√ρ√τ∥∥2

1
= Tr

[√√
τρ
√
τ

]2

(2)

FH represents the Holevo fidelity whereas F represents the Uhlmann fidelity. Generalizing the
above, we are interested in Rényi overlaps of the following kind:

Qα(ρ, τ) = Tr
[
ρατ1−α] , (3)

Q̃α(ρ, τ) = Tr
[
(τ

1−α
2α ρτ

1−α
2α )α

]
(4)

= Tr
[(
ρ

1
2 τ

1−α
α ρ

1
2

)α]
, (5)

where α ∈ (0, 1) ∪ (1,∞). Here, Q represents the Petz-Rényi relative entropy while Q̃ represents
the sandwiched Rényi relative entropy. Note that Qα= 1

2
(ρ, τ) =

√
FH(ρ, τ) and Q̃α= 1

2
(ρ, τ) =√

F (ρ, τ). The reason these overlap functions are interesting is because we can bound the opera-
tionally meaningful trace distance between two states as

FH(ρ, τ) ≤ F (ρ, τ), (6)

1−
√
F (ρ, τ) ≤ 1−

√
FH(ρ, τ) ≤ 1

2
‖ρ− τ‖1 ≤

√
1− F (ρ, τ) ≤

√
1− FH(ρ, τ). (7)

As we do not possess a general formula for the trace distance between Gaussian states, the above
relation proves useful in bounding it. For simplicity in calculating these expressions, we will restrict
ourselves to consider only zero-mean states.
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2.1 Simple overlap of Gaussian states

Let us first consider the simple overlap formula Tr[ρτ ] for states

ρ =
1√

Det
(
σρ+iΩ

2

) exp

(
−1

2
r̂THρr̂

)
, (8)

τ =
1√

Det
(
στ+iΩ

2

) exp

(
−1

2
r̂THτ r̂

)
. (9)

Thus we obtain

Tr[ρτ ] =
1√

Det
(
σρ+iΩ

2

)
Det

(
στ+iΩ

2

)Tr
[
e−

1
2
r̂THρr̂e−

1
2
r̂THτ r̂

]
(10)

We now wish to simplify the RHS of the above expression involving the product of two quadratic
exponentials. In order to do so, we note the general result that for complex symmetric matrices H1

and H2, there exists another complex symmetric matrix H3 such that if H3 satisfies the relation

e−
1
2
r̂TH1r̂e−

1
2
r̂TH2r̂ = e−

1
2
r̂TH3r̂, (11)

then it also satisfies
e−iΩH1e−iΩH2 = e−iΩH3 . (12)

The latter relation is useful in finding a form for H3. Inverting the expression, we obtain

eiΩH3 = eiΩH2eiΩH1 (13)

For simplicity in notations, define

W3 =
(
I + eiΩH3

) (
I − eiΩH3

)−1
, (14)

σ3 = −W3iΩ. (15)

The latter implies that

σ3 = coth

(
iΩH3

2

)
iΩ. (16)

Also, we note that

σ1 = coth

(
iΩH1

2

)
iΩ, (17)

σ2 = coth

(
iΩH2

2

)
iΩ. (18)

Using these, we can arrive at the final form of σ3 and H3 as (see page 13, Ref. [1])

σ3 = −iΩ + (σ2 + iΩ)(σ1 + σ2)−1(σ1 + iΩ), (19)

H3 = 2iΩarccoth (σ3iΩ) , (20)
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from which we can obtain√
Det

(
σ3 + iΩ

2

)
=

√√√√Det

((
σ2 + iΩ

2

)(
σ1 + σ2

2

)−1(σ1 + iΩ

2

))
(21)

Note that σ3 is complex symmetric. It can be shown that (see Prop. 11, Ref. [1])

Tr
[
e−

1
2
r̂TH3r̂

]
=

√
Det

(
σ3 + iΩ

2

)
(22)

Thus finally we can simplify the expression for the overlap as

Tr [ρτ ] =
1√

Det
(
σρ+iΩ

2

)
Det

(
στ+iΩ

2

)
√

Det
(
σρ+iΩ

2

)
Det

(
στ+iΩ

2

)
√

Det
(
σρ+στ

2

) (23)

=
1√

Det
(
σρ+στ

2

) (24)

=
2n√

Det(σρ + στ )
(25)

We note that the overlap expression is not a function of the Hamiltonian matrix which implies that
it is valid for pure (coherent) states also.

If the mean vectors of the states are represented by rρ and rτ , then it can be shown that the overlap
expression is

Tr[ρτ ] =
2n√

Det(σρ + στ )
exp[−δT (σρ + στ )−1δ] (26)

where δ = rρ − rτ .

2.2 Petz-Rényi relative entropy of Gaussian states

Having computed an expression for the simple overlap formula, we now move on to compute the
Petz-Rényi overlap of Gaussian states, defined as

Qα(ρ, τ) = Tr
[
ρατ1−α] . (27)

We will restrict ourselves to first consider the case when α ∈ (0, 1). For notational simplicity, label
the normalization of Gaussian states as

Zρ ≡

√
Det

(
σρ + iΩ

2

)
, (28)

For states ρ and τ as defined in (8) and (9), the Petz-Rényi overlap is

Qα(ρ, τ) =
1

(Zρ)α(Zτ )1−αTr
[
e−

1
2
r̂TαHρr̂e−

1
2
r̂T (1−α)Hτ r̂

]
(29)

=
Zρ(α)Zτ(1−α)

(Zρ)α(Zτ )1−αTr

[
e−

1
2
r̂TαHρr̂

Zρ(α)

e−
1
2
r̂T (1−α)Hτ r̂

Zτ(1−α)

]
(30)
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wherein we have used the fact that the Hamiltonian matrix of the exponent of a Gaussian state is
the product of that exponent with the original Hamiltonian matrix. Now we can apply the simple
overlap that we calculated earlier to obtain

Qα(ρ, τ) =
Zρ(α)Zτ(1−α)

(Zρ)α(Zτ )1−α
1√

Det
(
σρ(α)+στ(1−α)

2

) , (31)

where

Zρ(α) =

√
Det

(
σρ(α) + iΩ

2

)
, (32)

Zτ(1−α) =

√
Det

(
στ(1−α) + iΩ

2

)
, (33)

and

σρ(α) =

[
I + (σρiΩ)−1

]α
+
[
I − (σρiΩ)−1

]α
[I + (σρiΩ)−1]α − [I − (σρiΩ)−1]α

iΩ, (34)

στ(1−α) =

[
I + (στ iΩ)−1

]1−α
+
[
I − (στ iΩ)−1

]1−α
[I + (στ iΩ)−1]1−α − [I − (στ iΩ)−1]1−α

iΩ. (35)

Holevo Fidelity: For α = 1
2 the above expression simplifies to

Q 1
2
(ρ, τ) =

√
FH(ρ, τ) = Tr

[√
ρ
√
τ
]

(36)

=
Zρ(1/2)Zτ(1/2)

(Zρ)
1
2 (Zτ )

1
2

1√
Det

(
σρ(1/2)+στ(1/2)

2

) (37)

where

σρ(1/2) =

(√
I + (σρΩ)−2 + I

)
σρ, (38)

στ(1/2) =
(√

I + (στΩ)−2 + I
)
στ , (39)

and

Zρ(1/2) =

√
Det

(
σρ(1/2) + iΩ

2

)
, (40)

Zτ(1/2) =

√
Det

(
στ(1/2) + iΩ

2

)
. (41)

Now we shall consider the case of α > 1. This is interesting because we will have to deal with inverses
of Gaussian states which are in general unbounded operators. However, we can find expressions
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for overlaps. In order to derive such an expression, note that for H1, H2 > 0 such that σ2 > σ1, we
have (see Ref. [1])

Tr
[
e−r̂

TH1r̂e−r̂
T (−H2)r̂

]
=

√
Det

(
σ1+iΩ

2

)
Det

(
σ2+iΩ

2

)√
Det

(
σ2−σ1

2

) (42)

Now we can consider

Qα(ρ, τ) = Tr
[
ρατ1−α] (43)

=
1

(Zρ)α(Zτ )1−αTr
[
e−

1
2
r̂TαHρr̂e−

1
2
r̂T [−(α−1)Hτ ]r̂

]
(44)

We can apply the above relation to obtain the following, when στ(α−1) > σρ(α)

Tr
[
ρατ1−α] =

Zρ(α)Zτ(α−1)

(Zρ)α(Zτ )1−α
1√

Det
(
στ(α−1)−σρ(α)

2

) (45)

where Zρ(α), Zτ(α−1), and σρ(α) and στ(1−α) are defined similarly. The above expression simplifies
significantly for α = 2. In that case, for στ > σρ(2)

Tr[ρ2τ−1] =
Zρ(2)(Zτ )2

(Zρ)2

1√
Det

(
στ−σρ(2)

2

) (46)

where

σρ(2) =
1

2

(
σρ + Ωσ−1

ρ ΩT
)

(47)

2.3 Sandwiched Petz-Rényi relative entropy

Let’s now consider the sandwiched Petz-Rényi relative entropy:

Q̃α(ρ, τ) = Tr
[(
τ

1−α
2α ρτ

1−α
2α

)α]
(48)

= Tr
[(
ρ

1
2 τ

1−α
α ρ

1
2

)α]
(49)

For states ρ and τ as defined in Eqs. (8) and (9),

Q̃α(ρ, τ) =
1

(Zρ)α(Zτ )1−αTr
[(
e−

1
2
r̂T 1

2
Hρr̂e−

1
2
r̂T [βHτ ]r̂e−

1
2
r̂T 1

2
Hρr̂
)α]

, (50)

where β = (1− α)/α. We use the fact that

e−
1
2
r̂T 1

2
H1r̂e−

1
2
r̂TH2r̂e−

1
2
r̂T 1

2
H1r̂ = e−

1
2
r̂TH3r̂ (51)

where (see Prop. 8, Ref. [1])

H3 = 2iΩarccoth(σ3iΩ), (52)

σ3 = σ1 −
(√

I + (σ1Ω)−2
)
σ1(σ1 + σ2)−1σ1

(√
I + (Ωσ1)−2

)
. (53)
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Using this, we find that

e−
1
2
r̂T 1

2
Hρr̂e−

1
2
r̂T βHτ r̂e−

1
2
r̂T 1

2
Hρr̂ = e−

1
2
r̂THζ r̂, (54)

where

Hζ = 2iΩarccoth(σζiΩ), (55)

σζ = σρ −
(√

I + (σρΩ)−2

)
σρ(σρ + στ(β))

−1σρ

(√
I + (Ωσρ)−2

)
, (56)

στ(β) =

[
I + (στ iΩ)−1

]β
+
[
I − (στ iΩ)−1

]β
[I + (στ iΩ)−1]β − [I − (στ iΩ)−1]β

iΩ. (57)

Finally, we exponentiate this expression with α from the definition of sandwiched Petz-Rényi over-
lap. We use the fact that this scales the resultant Hamiltonian matrix by a factor α so as to
obtain

Tr
[
e−

1
2
r̂TαHζ r̂

]
=

√
Det

(
σζ(α) + iΩ

2

)
(58)

where

σζ(α) =

[
I + (σζiΩ)−1

]α
+
[
I − (σζiΩ)−1

]α
[I + (σζiΩ)−1]α − [I − (σζiΩ)−1]α

iΩ (59)

Thus we obtain our formula for the sandwiched Petz-Rényi overlap as:

Q̃α(ρ, τ) =
1

(Zρ)α(Zτ )1−α

√
Det

(
σζ(α) + iΩ

2

)
(60)

Fidelity is a special case of sandwiched Petz-Rényi overlap. When α = 1
2 , we have

F [ρ, τ ] =
(
Q̃α= 1

2
(ρ, τ)

)2
(61)

Fidelity: If α = 1
2 , we have β = 1, and τ(β) = τ . Thus we have

σζ = σρ −
(√

I + (σρΩ)−2

)
σρ(σρ + στ )−1σρ

(√
I + (σρΩ)−2

)
, (62)

σζ(α= 1
2

) =

(√
I + (σζΩ)−2 + I

)
σζ , (63)

and thus the fidelity becomes

F [ρ, τ ] = Tr

[√
ρ

1
2 τρ

1
2

]2

(64)

=
Det

[
σζ( 1

2
)

]
ZρZτ

(65)

Now we will find an expression for the sandwiched Petz-Rényi overlap when α > 1. For simplicity,
define γ = −β > 0. When στ(γ) > σρ, we have

Q̃α(ρ, τ) =
1

(Zρ)α(Zτ )1−α

√
Det

(
σζ(α) + iΩ

2

)
(66)
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where

σζ(α) =

[
I + (σζiΩ)−1

]α
+
[
I − (σζiΩ)−1

]α
[I + (σζiΩ)−1]α − [I − (σζiΩ)−1]α

iΩ, (67)

σζ = σρ +

(√
I + (σρΩ)−2

)
σρ(στ(γ)−σρ)

−1σρ

(√
I + (σρΩ)−2

)
, (68)

στ(γ) =

[
I + (στ iΩ)−1

]γ
+
[
I − (στ iΩ)−1

]γ
[I + (στ iΩ)−1]γ − [I − (στ iΩ)−1]γ

iΩ. (69)
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