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1 Overview

In the last lecture, we reviewed a method to find the symplectic eigenvalues of a positive definite
matrix. We then derived a relation between the Hamiltonian matrix and the covariance matrix
corresponding to a faithful Gaussian state. Finally, we reviewed the conditions for the purity of a
Gaussian state and found an expression for the von Neumann entropy of a Gaussian state

In this lecture, we find the quantum relative entropy and the Rényi entropies for faithful Gaussian
states. We point readers to [Ser17] for background on topics covered in this lecture.

2 Relative entropy of faithful Gaussian states

The quantum relative entropy D(ρ‖τ) of a density operator ρ and a positive definite operator τ is
defined as follows:

D(ρ‖τ) = Tr{ρ(ln ρ− ln τ)} . (1)

This is the formula for the finite-dimensional case, and it turns out to be legitimate for faithful
Gaussian states.

In the last lecture we showed that

Tr{ρ ln ρ} = −1

2
ln Det[(σρ + iΩ)/2]− 1

4
Tr{Hρσρ} (2)

We now calculate −Tr{ρ ln τ}. Consider that

ρ = D̂−r̄ρρ0D̂r̄ρ , (3)

where ρ0 has zero mean and the covariance matrix is σρ. Then using cyclicity of trace and functional
calculus of ln(·), we find that

−Tr{ρ ln τ} = −Tr{ρ0 ln D̂r̄ρτD̂−r̄ρ}. (4)

Let

τ =
exp[−(1/2)(r̂ − r̄τ )THτ (r̂ − r̄τ )]√

Det[(στ + iΩ)/2]
. (5)
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Then

D̂r̄ρτD̂−r̄ρ =
exp[−(1/2)(r̂ − δ)THτ (r̂ − δ)]√

Det[(στ + iΩ)/2]
(6)

with δ = r̄τ − r̄ρ. Therefore,

− Tr{ρ0 ln D̂r̄ρτD̂−r̄ρ}

= −Tr{ρ0 ln
1√

Det[(στ + iΩ)/2]
}+ Tr{ρ0

(
1

2
(r̂ − δ)THτ (r̂ − δ)

)
} (7)

=
1

2
ln Det[(στ + iΩ)/2] +

1

2
Tr{ρ0(r̂ − δ)THτ (r̂ − δ)} . (8)

We now focus on the second term.

1

2

∑
j,k

Tr{ρ0(r̂j − δj)(r̂k − δk)}Hτ
j,k

=
1

2

∑
j,k

(Tr{ρ0r̂j r̂k} − Tr{ρ0r̂k}δj − Tr{ρ0r̂j}δk + Tr{ρ0}δjδk)Hτ
j,k (9)

=
1

2

∑
j,k

(Tr{ρ0r̂j r̂k}+ δjδk)H
τ
j,k (10)

=
1

2

∑
j,k

Tr{ρ0r̂j r̂k}Hτ
j,k +

1

2
δTHτδ (11)

=
1

4
Tr{σρHτ}+

1

2
δTHτδ . (12)

From (8) and (12), we get

−Tr{ρ ln τ} =
1

2
ln Det[(στ + iΩ)/2] +

1

4
Tr{σρHτ}+

1

2
δTHτδ , (13)

where δ = r̄τ − r̄ρ.

Therefore, the quantum relative entropy of two Gaussian states ρ and τ is given by

D(ρ‖τ) =
1

2

[
ln

(
Det[(στ + iΩ)/2]

Det[(σρ + iΩ)/2]

)
+

1

2
Tr{σρ(Hτ −Hρ)}+ δTHτδ

]
(14)

=
1

2

[
ln

(
Det[στ + iΩ]

Det[σρ + iΩ]

)
+

1

2
Tr{σρ(Hτ −Hρ)}+ δTHτδ

]
. (15)

The aforementioned expression is finite whenever τ is faithful.

3 Computing Rényi entropies and powers of Gaussian states

In this section, we first find Rényi entropies of Gaussian states in terms of symplectic eigenvalues.
We then find the power of Gaussian states in terms of the mean vector and the covariance matrix.
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3.1 Rény entropies of Gaussian states

The quantum Rényi entropy of a quantum state ρ is defined as

Sα(ρ) =
1

1− α
ln Tr{ρα}, (16)

for α ∈ (0, 1) ∪ (1,∞). Moreover,

lim
α→1

Sα(ρ) = S(ρ). (17)

Our goal is to find Tr{ρα}. Using the fact that

ρ = D̂−r̄Ŝ

 n⊗
j=1

θ(n̄j)

 Ŝ†D̂r̄ , (18)

we find that

Tr{ρα} =
n∏
j=1

Tr{θ(n̄j)α} . (19)

Consider the following chain of equalities:

Tr{θ(n̄)α} =
1

(n̄+ 1)α

∞∑
n=0

(
n̄

n̄+ 1

)αn
(20)

=
1

(n̄+ 1)α
1

1− (n̄/(n̄+ 1))α
(21)

=
1

(n̄+ 1)α − n̄α
, (22)

which implies that

Tr{ρα} =
n∏
j=1

1

(n̄j + 1)α − n̄αj
. (23)

In terms of symplectic eigenvalues νj = 2n̄j + 1, Tr{ρα} is given by

Tr{ρα} =
n∏
j=1

2α

(νj + 1)α − (νj − 1)α
. (24)

Therefore, from (16) and (24), it follows that

Sα(ρ) =
1

1− α

n∑
j=1

ln

(
2α

(νj + 1)α − (νj − 1)α

)
. (25)
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The Rényi entropy can also be expressed as

Sα(ρ) =
α

1− α
ln Tr{ρα}1/α (26)

=
α

1− α
ln ‖ρ‖α . (27)

Therefore,

S∞(ρ) = − ln ‖ρ‖∞ ≡ Smin(ρ) (28)

We now find S∞(ρ) using the fact that ‖θ(n̄)‖∞ = 1/(n̄ + 1). Consider the following chain of
equalities:

S∞(ρ) = − ln

∥∥∥∥∥∥
n⊗
j=1

θ(n̄j)

∥∥∥∥∥∥
∞

(29)

= − ln
n∏
j=1

‖θ(n̄j)‖∞ (30)

=
n∑
j=1

− ln(1/(n̄j + 1)) (31)

=
n∑
j=1

ln(n̄j + 1) (32)

=

n∑
j=1

ln[(νj + 1)/2] . (33)

In general, the following relation holds for the Rényi entropy:

Sα(ρ) ≥ Sβ(ρ), (34)

for α ≤ β.

We now find the difference between S(ρ) and S∞(ρ). Consider the following chain of inequalities:

S(ρ)− S∞(ρ) =
n∑
j=1

g(n̄j)− ln(n̄j + 1) (35)

=
n∑
j=1

(n̄j + 1) ln(n̄j + 1)− n̄j ln n̄j − ln(n̄j + 1) (36)

=

n∑
j=1

ln[((n̄j + 1)/n̄j)
n̄j ] (37)

≤
n∑
j=1

ln(e) (38)

= n . (39)

Therefore, the difference between S(ρ) and S∞(ρ) never exceeds the number of modes.
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3.2 Power of Gaussian state

Let

ρ =
1√

Det[(σ + iΩ)/2)]
exp

(
−1

2
(r̂ − r̄)TH(r̂ − r̄)

)
(40)

= D̂−r̄

[
exp

(
−1

2 r̂
THr̂

)√
Det[(σ + iΩ)/2)]

]
D̂r̄ . (41)

Therefore,

ρα ∝ D̂−r̄ exp(−(1/2)r̂TαHr̂)D̂r̄. (42)

Let H(α) = αH. Then there exists a corresponding σ(α) such that

ρα

Tr{ρα}
=
D̂−r̄ exp(−(1/2)r̂TH(α)r̂)D̂r̄√

Det[(σ(α) + iΩ)/2]
(43)

=
exp(−(1/2)(r̂ − r̄)TH(α)(r̂ − r̄))√

Det[(σ(α) + iΩ)/2]
. (44)

To determine σ(α) in terms of σ, we use the following formulas derived in the previous lecture:

σ = coth(iΩH/2)iΩ, (45)

H = 2 arccoth(iΩσ)iΩ . (46)

Consider that

σ(α) = coth(iΩH(α)/2)iΩ (47)

= coth(iΩαH/2)iΩ (48)

= coth(iΩα/2[2 arccoth(σiΩ)iΩ])iΩ (49)

= coth(α arccoth(σiΩ))iΩ. (50)

For |x| > 1, we have that

coth(α arccoth(x)) =
(1 + 1/x)α + (1− 1/x)α

(1 + 1/x)α − (1− 1/x)α
. (51)

Since eigenvalues of σiΩ are either greater than 1 or less than −1, by using (51) we find that

σ(α) =
(I + (σiΩ)−1)α + (I − (σiΩ)−1)α

(I + (σiΩ)−1)α − (I − (σiΩ)−1)α
iΩ , (52)

which implies that

ρα

Tr{ρα}
=

exp(−(1/2)(r̂ − r̄)TH(α)(r̂ − r̄))√
Det[(σ(α) + iΩ)/2]

. (53)

5



Moreover,

Tr{ρα} = Tr

{(
exp(−(1/2)(r̂ − r̄)TH(r̂ − r̄))√

Det[(σ + iΩ)/2]

)α}
(54)

=
1

(Det[(σ + iΩ)/2)])α/2
Tr{exp(−(1/2)(r̂ − r̄)TαH(r̂ − r̄))} (55)

=
1

(Det[(σ + iΩ)/2])α/2

√
Det[(σ(α) + iΩ)/2] . (56)

We now focus on two special cases: α = 2 and α = 1/2. For α = 2, we have

(1 + 1/x)α + (1− 1/x)α

(1 + 1/x)α − (1− 1/x)α
=

1

2
(x+ x−1) (57)

Therefore,

σ(2) =
1

2
(σiΩ + (σiΩ)−1)iΩ (58)

=
1

2
(σ + iΩσ−1iΩ) (59)

=
1

2
(σ + Ωσ−1ΩT ) , (60)

which implies that

ρ2

Tr{ρ2}
=

exp(−(1/2)(r̂ − r̄)T 2H(r̂ − r̄))√
Det[((1/2)(σ + Ωσ−1ΩT ) + iΩ)/2]

. (61)

Moreover, the purity of the Gaussian state ρ is given by

Tr{ρ2} =
1

Det[(σ + iΩ)/2]

√
Det[((1/2)(σ + Ωσ−1ΩT ) + iΩ)/2] , (62)

which further reduces (after many steps) to

Tr{ρ2} =
1√

Det(σ)
. (63)

We note that the same expression for the purity of a Gaussian state was derived in the previous
lecture by using a different approach.

Let α = 1/2. Consider that

ρ1/2

Tr{ρ1/2}
=

exp(−(1/2)(r̂ − r̄)TH(1/2)(r̂ − r̄))√
Det[(σ(1/2) + iΩ)/2]

, (64)

where H(1/2) = 1/2H. Moreover, for α = 1/2, we have

(1 + 1/x)α + (1− 1/x)α

(1 + 1/x)α − (1− 1/x)α
= (1 +

√
1− 1/x2)x , (65)
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which implies that

σ(1/2) = (I +
√
I − (σiΩ)−2)(σiΩ)iΩ (66)

= (
√
I + (σΩ)−2 + I)σ . (67)

Therefore,

Tr{ρ1/2} =
1

(Det[(σ + iΩ)/2])1/4

√
Det[((

√
I + (σΩ)−2 + I)σ + iΩ)/2] . (68)
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