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1 Overview

In the previous lecture, we considered finite-energy states, defined the covariance matrix, and
studied constraints that the covariance matrix should satisfy. Lastly, we also stated and proved the
uncertainty principle for bosonic quantum states.

In this lecture, we consider generic transformations of quantum states. We study the effects of these
transformations on the mean vector and covariance matrix of the state in consideration. We will
define the unitary displacement operator and study its properties. Lastly, we will define another
set of Hamiltonians that are quadratic in the quadrature operators, which generate another class
of transformations. The study of those transformations will be completed in the following lectures.

2 Generic transformations of quantum states

In this section, we study generic transformations on quantum states and their effect on the mean
vector and covariance matrix of the states.

2.1 The Displacement Operator

Suppose that we would like to shift the mean vector of an n-mode quantum state by a vector
r ∈ R2n. To do so, we define the unitary displacement operator.

Definition 1. The unitary displacement operator D̂r is defined as

D̂r = eir
T Ωr̂ (1)

where r̂ is the vector of quadrature operators as defined in earlier lectures, and Ω is the symplectic
form that captures the canonical commutation relations between the quadrature operators.

Lemma 2. The displacement of an n-mode state is a tensor product of single-mode displacements.

D̂r = D̂r1 ⊗ D̂r2 ⊗ ...⊗ D̂rn (2)

with rj = (xj pj)
T .
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Proof. Note that

rTΩr̂ =
2n∑

j,k=1

rjΩjkr̂k (3)

=

n∑
j=1

(
xj p̂j − pj x̂j

)
. (4)

Due to this component-wise expression, we have that

eir
T Ωr̂ = exp

i n∑
j=1

(
xj p̂j − pj x̂j

) (5)

and thus that
D̂r = D̂r1 ⊗ D̂r2 ⊗ ...⊗ D̂rn , (6)

concluding the proof.

Further, we can think of rTΩr̂ as a Hamiltonian. From the above analysis we note that(
rTΩr̂

)†
= rTΩr̂. (7)

Since rTΩr̂ is a Hamiltonian, it follows that eir
T Ωr̂ is indeed unitary, as stated in Definition 1.

2.2 Inverse of the displacement operator

Observe that

D̂†r =
(
eir

T Ωr̂
)†

= e−ir
T Ωr̂ = D̂−r. (8)

This implies that the displacement can be inverted by displacing in the opposite way.

2.3 Commutation Relations between Displacement Operators

Suppose that we have two displacement operators D̂r1 and D̂r2 for r1, r2 ∈ R2n. What is the
commutation relation between the two displacement operators? In what follows, we prove the
following equation:

D̂r1+r2 = D̂r1D̂r2e
irT1 Ωr2/2. (9)

To prove this, we first need the following result.

Lemma 3. When X and Y commute with [X,Y ], the following equality holds

eXeY = eX+Y + 1
2

[X,Y ]. (10)
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Proof. The starting point is the celebrated Baker–Campbell–Hausdorff formula

eXY e−X = Y + [X,Y ] +
1

2!

[
X, [X,Y ]

]
+

1

3!

[
X,
[
X, [X,Y ]

]]
+ ... (11)

In the case that X and Y both commute with [X,Y ], the above simplifies to the following for s ∈ R.

esXY e−sX = Y + s[X,Y ]. (12)

Define g(s) = esXesY . By differentiating with respect to s, one obtains

dg(s)

ds
=

d

ds

(
esXesY

)
(13)

= XesXesY + esXY esY (14)

= Xg(s) + esXY e−sXesXesY (15)

=
(
X + esXY e−sX

)
g(s) (16)

=
(
X + Y + s[X,Y ]

)
g(s). (17)

The solution to this differential equation is

g(s) = es(X+Y )+ s2

2
[X,Y ] = esXesY . (18)

∀s ∈ R such that X and Y commute with [X,Y ]. The second equality in the above follows from
the definition of g(s).

Set s = 1 to yield

eXeY = eX+Y + 1
2

[X,Y ], (19)

concluding the proof.

Lemma 4.
D̂r1+r2 = D̂r1D̂r2e

irT1 Ωr2/2. (20)

Proof. Set X = eir
T
1 Ωr̂ and Y = eir

T
2 Ωr̂.

We evaluate [X,Y ] as a first step.

[X,Y ] =
[
irT1 Ωr̂, irT2 Ωr̂

]
(21)

= −
[
rT1 Ωr̂, rT2 Ωr̂

]
(22)

= −
[∑

jk

r1,jΩjkr̂k,
∑
lm

r2,lΩlmr̂m

]
(23)

= −
∑
jklm

r1,jr2,lΩjkΩlm

[
r̂k, r̂m

]
(24)

= −
∑
jklm

r1,jr2,lΩjkΩlmiΩkm (25)
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= −i
∑
jklm

r1,jΩjkΩkmΩlmr2,l (26)

= i
∑
jklm

r1,jΩjkΩkmΩmlr2,l (27)

= irT1 ΩΩΩr2 (28)

= −irT1 Ωr2. (29)

In the above, the first four equalities follow from algebraic manipulation and expanding X and Y in
terms of their components. The fifth equality follows from application of the canonical commutation
relation. The sixth equality again is algebraic manipulation, and the seventh equality follows from
Ω being antisymmetric. The eighth equality follows from observing the expression to describe
matrix multiplication. The final equality follows from the involutory nature of iΩ, i.e. Ω2 = −I.

[X,Y ] = −irT1 Ωr2 is a scalar, and hence commutes with both X and Y . Because of this, we can
apply the above Lemma 3.

D̂r1D̂r2 = eir
T
1 Ωr̂eir

T
2 Ωr̂ (30)

= e

(
irT1 Ωr̂+irT2 Ωr̂−i/2rT1 Ωr2

)
(31)

= ei(r1+r2)T Ωr̂e−
i
2
rT1 Ωr2 (32)

= D̂r1+r2e
− i

2
rT1 Ωr2 . (33)

We can now write
D̂r1+r2 = D̂r1D̂r2e

i
2
rT1 Ωr2 (34)

which completes the proof.

Corollary 5.
D̂r1D̂r2 = D̂r2D̂r1e

−irT1 Ωr2 (35)

Proof. Apply Lemma 4 twice to get

D̂r1D̂r2e
i
2
rT1 Ωr2 = D̂r1+r2 (36)

= D̂r2D̂r1e
i
2
rT2 Ωr1 (37)

= D̂r2D̂r1e
i
2
rT1 ΩT r2 (38)

= D̂r2D̂r1e
− i

2
rT1 Ωr2 . (39)

The first equality is a statement of Lemma 4. The second equality comes from once more applying
Lemma 4. The third and fourth equalities come from considering the transpose of the argument of
the exponential.

2.4 Connection to traditional single-mode displacement operator

Definition 6. In quantum optics, we define the single-mode displacement operator as follows:

D(α) ≡ exp
(
αâ† − α∗â

)
(40)

4



To see its connection to the displacement operator discussed so far, consider that for α ∈ C and
α = αR + iαI ,

D(α) ≡ exp
(
αâ† − α∗â

)
(41)

= exp
(

[αR + iαI ]â† − [αR − iαI ]â
)

(42)

= exp
(
αR[â† − â] + iαI [â+ â†]

)
(43)

= exp
(
− i
√

2αR

[ â− â†√
2i

]
+ i
√

2αI

[ â+ â†√
2

])
(44)

= exp
(
i
√

2
[
αI x̂− αRp̂

])
. (45)

It is important to keep in mind that there is a factor of
√

2 that must be taken care of when going
between the two conventions.

To implement an n-mode displacement operator on a quantum state in a lab, one uses an array of
highly transmissive beamsplitters and strong local oscillators in coherent states. This point will be
returned to later.

2.5 Effect of displacement operator on mean vector of a state

Theorem 7. The displacement operator D̂r shifts the mean vector of an arbitrary state ρ by r.

D̂†r r̂D̂r = r̂ − r. (46)

Proof. Upon action of a displacement operator D̂r, the new mean vector of ρ is given by

r′ = Tr
[
r̂D̂rρD̂

†
r

]
(47)

= Tr
[
D̂†r r̂D̂rρ

]
(48)

which arises from the definition of the mean vector and the cyclicity of trace.

From the above, we see that the problem of computing the new mean vector has been reduced to
computing D̂†r r̂D̂r, which is the same as computing

D̂†rx̂jD̂r and D̂†rp̂jD̂r ∀j ∈ {1, ..., n}. (49)

We proved earlier in Lemma 2 that the displacement operator for n modes can be written as a
tensor product of single-mode displacements. This enables us to write

D̂†rx̂jD̂r =
(
D̂†r1 ⊗ ...⊗ D̂

†
rn

)
x̂j

(
D̂r1 ⊗ ...⊗ D̂rn

)
(50)

= D̂†rj x̂jD̂rj . (51)

For p̂j , we can similarly write

D̂†rp̂jD̂r = D̂†rj p̂jD̂rj . (52)

We invoke the BCH formula (Lemma 3) to calculate the above.

D̂†rj x̂jD̂rj = ei
[
pj x̂j−xj p̂j

]
x̂je
−i
[
pj x̂j−xj p̂j

]
(53)
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= x̂j +
[
i
(
pj x̂j − xj p̂j

)
, x̂j

]
+ higher-order nested commutators that vanish (54)

= x̂j + i
[
− xj p̂j , x̂j

]
(55)

= x̂j − ixj
[
p̂j , x̂j

]
(56)

= x̂j − ixj(−i) (57)

= x̂j − xj . (58)

A similar calculation yields
D̂†rj p̂jD̂rj = p̂j − pj . (59)

Put together, we have
D̂†rj r̂D̂rj = r̂ − r. (60)

=⇒ r′ = Tr
[
D̂†rj r̂D̂rj

]
(61)

= Tr
[
(r̂ − r)ρ

]
(62)

= Tr
[
r̂ρ
]
− r. (63)

where we identify Tr
[
r̂ρ
]

as the original mean vector of ρ.

2.6 Effect of displacement operator on covariance matrix of a state

Lemma 8. The covariance matrix of a state ρ is unchanged upon action by a displacement operator.

This can be easily seen from the definition of the covariance matrix.

3 Quadratic Hamiltonians

The unitary displacement operator constitutes the most general evolution realizable by a Hamilto-
nian that is linear in the quadrature operators; i.e., the Hamiltonian is a real linear combination of
the quadrature operators. It is a natural next step to examine the evolution effected by a quadratic
Hamiltonian.

The general form of a quadratic Hamiltonian is as follows:

Ĥ =
1

2
r̂THr̂ (64)

where H is a real, symmetric 2n× 2n matrix.

In the above, Ĥ is the Hamiltonian operator, and H is the Hamiltonian matrix.

The Hamiltonian (64) realizes the following evolution:

e−iĤt = e−
i
2
r̂THtr̂. (65)

In the above, it is to be noted that the time parameter can be subsumed into the Hamiltonian
matrix.
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3.1 Effect of quadratic Hamiltonian on mean vector of a state

Theorem 9. A quadratic Hamiltonian with Hamiltonian matrix H changes the vector r̂ of canonical
quadrature operators as

eiĤtr̂e−iĤt = eΩHtr̂. (66)

Proof. We will again invoke the BCH formula (Lemma 3) which is restated below for completeness.

eX̂ Ŷ e−X̂ = Ŷ + [X̂, Ŷ ] +
1

2!

[
X̂, [X̂, Ŷ ]

]
+

1

3!

[
X̂,
[
X̂, [X̂, Ŷ ]

]]
+ ... (67)

eiĤtr̂e−iĤt = r̂ + [iĤt, r̂] +
1

2!

[
iĤt, [iĤt, r̂]

]
+

1

3!

[
iĤt,

[
iĤt, [iĤt, r̂]

]]
+ ... (68)

Consider [iĤt, r̂] = it[Ĥ, r̂] one component at a time.

[Ĥ, r̂l] =

1

2

∑
jk

r̂jHjkr̂k, r̂l

 (69)

=
1

2

∑
jk

Hjk

(
r̂j r̂kr̂l − r̂lr̂j r̂k

)
(70)

=
1

2

∑
jk

Hjk

(
r̂j r̂kr̂l − r̂j r̂lr̂k + r̂j r̂lr̂k − r̂lr̂j r̂k

)
(71)

=
1

2

∑
jk

Hjk

(
r̂j [r̂k, r̂l] + [r̂j , r̂l]r̂k

)
(72)

=
1

2

∑
jk

Hjk

(
r̂jiΩkl + iΩjlr̂k

)
(73)

=
i

2

∑
jk

Hjkr̂jΩkl +HjkΩjlr̂k (74)

=
i

2

∑
jk

(−Ωlk)Hkj r̂j + (−Ωlj)Hjkr̂k (75)

= −i[ΩHr̂]l (76)

In the above, the first two equalities come from the form of Ĥ. The third equality comes from adding
and subtracting the term r̂j r̂lr̂k. The fourth equality comes from algebraic simplification, and the
fifth equality comes from recognizing that [r̂k, r̂l] = iΩkl. Using the fact that Ω is antisymmetric,
we arrive at the final set of equalities.

This implies

[iĤt, r̂] = it[Ĥ, r̂] (77)

= it(−iΩHr̂) (78)

= ΩHtr̂. (79)
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Using linearity of the commutator,[
iĤt, [iĤt, r̂]

]
=
[
iĤt,ΩHtr̂

]
(80)

= (ΩHt)2r̂ (81)

and inductively [
iĤt, ...

[
iĤt, r̂

]]
= (ΩHt)kr̂. (82)

In the above, there are k − 1 nested commutators, or k commutators in total.

This altogether implies

eiĤtr̂e−iĤt =
∞∑
k=0

(ΩHt)k

k!
r̂ (83)

= eΩHtr̂, (84)

concluding the proof.

Corollary 10. A quadratic Hamiltonian with Hamiltonian matrix H changes the mean vector of
a state ρ from Tr

[
r̂ρ
]

to eΩHtTr
[
r̂ρ
]
.

Proof. Direct consequence of the above and the following:

r′ = Tr
[
r̂e−iĤtρeiĤt

]
(85)

= Tr
[
eiĤtr̂e−iĤtρ

]
. (86)

Similar to the procedure with the displacement operator, we have reduced the problem of computing

the new mean vector to computing eiĤtr̂e−iĤt, which was accomplished previously.

Finally we can write the effect on the original mean vector:

r′ = Tr
[
eiĤtr̂e−iĤtρ

]
(87)

= Tr
[
eΩHtr̂ρ

]
(88)

= eΩHtTr
[
r̂ρ
]
, (89)

concluding the proof.

3.2 Effect of quadratic Hamiltonian on canonical commutation relations

Now that we have seen the effect of a quadratic Hamiltonian on the mean vector of a state, another
natural question to ask is the effect of a quadratic Hamiltonian on the canonical commutation
relations. In the following, we redefine Ht as H.

Theorem 11. A quadratic Hamiltonian as defined in (64) leaves the canonical commutation rela-
tions unchanged, i.e. [

eΩH r̂,
(
eΩH r̂

)T ]
= iΩ. (90)
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Proof. For real symmetric H, we have[
eΩH r̂,

(
eΩH r̂

)T ]
= eΩH [r̂, r̂T ](eΩH)T (91)

= eΩHiΩ(eΩH)T (92)

= iΩ. (93)

The first equality follows from the linearity of the commutator. The second equality follows by
application of the canonical commutation relation. To see the validity of the last equality, consider
the following:

eΩHiΩ(eΩH)T = eΩHiΩe(ΩH)T (94)

= eΩHiΩe−HΩ (95)

= iΩiΩeΩHiΩe−HΩ (96)

= iΩe(iΩ)ΩH(iΩ)e−HΩ (97)

= iΩe(iΩ)(iΩ)HΩe−HΩ (98)

= iΩeHΩe−HΩ (99)

= iΩ. (100)

In the above, the first equality can be seen from the functional calculus of matrices. The second
equality comes from the antisymmetry of Ω and the symmetry of H. The third equality arises
because (iΩ)2 = I. The fourth equality also follows from the functional calculus of matrices (i.e.
Mf(X)M−1 = f(MXM−1)). The fifth equality comes from combining terms and again recognizing
that (iΩ)2 = I. The sixth and last equalities come from algebraic simplification.

Definition 12. Any real matrix S for which SΩST = Ω is called symplectic; i.e., the action of S
preserves the symplectic form Ω.

Corollary 13. The evolution matrix eΩH is symplectic.

This is seen from the fact that the evolution eΩH preserves the canonical commutation relations.

Lemma 14. All symplectic matrices are invertible and the inverse of symplectic S is given by
S−1 = −ΩSTΩ.

Proof. Consider that

SΩST = Ω (101)

=⇒ SΩSTΩT = ΩΩT = I (102)

=⇒ S−1 = ΩSTΩT = −ΩSTΩ, (103)

concluding the proof.
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3.3 Necessity for realness of Hamiltonian matrix

In the preceding defintion of the standard quadratic Hamiltonian as in (64), we restricted ourselves
to only real and symmetric 2n× 2n matrices H. In the following, we will prove that this is indeed
the most general consideration and that antisymmetric Hamiltonian matrices H result in a non-
Hermitian Hamiltonian.

Lemma 15. When defining quadratic Hamiltonians, it suffices to restrict ourselves to consider
real, symmetric 2n× 2n Hamiltonian matrices.

Proof. To see this, we consider a general Hamiltonian matrix with symmetric and antisymmetric
parts, and arrive at the conclusion that the resulting Hamiltonian is not necessarily Hermitian.
This will allow us to conclude that to ensure the Hermiticity of the Hamiltonian operator, the
corresponding Hamiltonian matrix must be real and symmetric.

Let H be an arbitrary 2n× 2n matrix. We can write it as

H =
H +HT

2
+
H −HT

2
(104)

= Hs +Ha (105)

where Hs denotes the symmetric part of H, and Ha denotes the antisymmetric part of H. Now
consider the operator

1

2
r̂THr̂ =

1

2
r̂T (Hs +Ha)r̂ (106)

=
1

2
r̂THsr̂ +

1

2
r̂THar̂. (107)

Focus on the second term in the above.

1

2
r̂THar̂ =

1

2

∑
jk

r̂jH
a
jkr̂k (108)

=
1

2

∑
j<k

r̂jH
a
jkr̂k + r̂kH

a
kj r̂j (109)

=
1

2

∑
j<k

r̂jH
a
jkr̂k = r̂kH

a
jkr̂j (110)

=
1

2

∑
j<k

Ha
jk(r̂j r̂k − r̂kr̂j) (111)

=
1

2

∑
j<k

Ha
jk[r̂j , r̂k] (112)

=
1

2

∑
j<k

Ha
jkiΩjk (113)

=
i

2

∑
j<k

Ha
jkΩjk (114)

= ic (115)
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where c is some real number. The key point is that the above term is imaginary.

Thus we see from (107) that if Ha 6= 0, then

1

2
r̂THr̂ =

1

2
r̂THsr̂ + ic (116)

which implies that (107) cannot be Hermitian. We have thus arrived at the desired conclusion.

3.4 Obtaining Hamiltonian matrix from symplectic evolution matrix

If S = eΩH , then S is symplectic for real, symmetric H.

Here, we show a complementary result.

Theorem 16. If S is diagonalizable with strictly positive eigenvalues, then H = ΩT lnS is sym-
metric, where ln denotes the matrix logarithm.

Proof. Consider that

HT =
(
ΩT lnS

)T
(117)

= (lnS)TΩ (118)

= ΩΩT (lnST )Ω (119)

= Ω ln
(
ΩTSTΩ

)
(120)

= Ω ln
(
(−ΩT )ST (−Ω)

)
(121)

= Ω ln
(
ΩSTΩT

)
(122)

= Ω lnS−1 (123)

= −Ω lnS (124)

= ΩT lnS (125)

= H. (126)

Thus we see that H = HT and that H is real and symmetric.

The first equality comes from the assumption in the theorem. The second equality comes from
distributing the transpose operation. The third equality is apparent when one realizes that ΩΩT =
I. The fourth equality comes from the functional calculus of matrices. The fifth equality arises
from the antisymmetry of Ω. The seventh equality comes from the fact that S is symplectic.

Corollary 17. From any symplectic matrix S that is diagonalizable with strictly positive eigenval-
ues, we can get its Hamiltonian matrix by using H = ΩT lnS.
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