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1 Overview

In the last lecture, we developed the background required to study single-mode bosonic systems. We
studied creation, annihilation, position, and momentum operators and their properties. We then
extended the above for multiple-mode bosonic systems, and introduced the canonical symplectic
form.

In this lecture, we will introduce the mean vector in Section 2.1 and the covariance matrix of a
bosonic state in Section 2.2. We will then derive constraints that are fulfilled by a covariance matrix
of a bosonic state in Section 3.

2 Mean vector and covariance matrix

Consider the vector r̂ of canonical quadrature operators for an m-mode bosonic system:

r̂ ≡ (x̂1, p̂1 . . . , x̂m, p̂m)T , (1)

where x̂ refers to the position-quadrature operator and p̂ refers to the momentum-quadrature
operator.

2.1 Mean vector

For a state ρ of multiple modes, the mean vector r is given by

r = (x1, p1, . . . , xm, pm) , (2)

where the components of the mean vector are defined as follows:

x1 = Tr [x̂1ρ] = Tr
[(
x̂1 ⊗ Î ⊗ . . . Î

)
ρ
]
, (3)

p1 = Tr [p̂1ρ] = Tr
[(
Î ⊗ p̂1 ⊗ Î ⊗ . . . Î

)
ρ
]
, (4)

xj = Tr[x̂jρ] = 〈x̂j〉ρ, (5)

pj = Tr[p̂jρ] = 〈p̂j〉ρ, (6)

where Î is the identity operator and j ∈ {1, 2, . . .m}. Then, as a shorthand we can write the mean
vector as

r = Tr [r̂ρ] = (Tr[x̂1ρ], Tr[p̂1ρ], . . . ,Tr[x̂nρ], Tr[p̂nρ])T (7)
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Just like classical probability distributions need not have a finite mean, a quantum state need not
have a finite mean.

2.2 Covariance matrix

Let us denote the covariance matrix of a quantum state by σ, and let the entries be given by σjk.
Let r̂j be the jth element of r̂, where j ∈ {1, . . . 2m}, and m is the number of modes of the quantum
state considered. Let us define r̂cj = r̂j − 〈r̂j〉ρ. Then, the covariance matrix elements are defined
as

σjk = Tr
[(
r̂cj r̂

c
k + r̂ckr̂

c
j

)
ρ
]

(8)

= Tr
[{
r̂cj , r̂

c
k

}
ρ
]

(9)

= 〈
{
r̂cj , r̂

c
k

}
〉ρ, (10)

where σjk ∈ R and k ∈ {1, . . . , 2m}.

Now, consider the total photon number operator

N̂ =
m∑
j=1

n̂j , (11)

where n̂j = â†j âj . Let us define finite-energy state as the states that fulfill the following constraint:

Tr
[
N̂ρ
]
<∞. (12)

Proposition 1. A state has finite energy iff the elements of r and σ are finite, that is rj <∞ and
σjk <∞.

Proof. Let us first prove that if the state ρ has finite energy then the elements of its mean vector
r and covariance matrix σ are finite. The definition of a finite-energy state implies

Tr [n̂jρ] <∞. (13)

Then observe that,

Tr [n̂jρ] =
1

2
Tr
[(
x̂2j + p̂2j − 1

)
ρ
]
<∞. (14)

This implies, Tr
[
x̂2jρ
]
,Tr

[
p̂2jρ
]
<∞. Then, we conclude the following:

|xj | = |Tr [x̂jρ] | (15)

= |Tr [x̂
√
ρ
√
ρ] | (16)

≤
√

Tr [x̂j
√
ρ
√
ρx̂j ] · Tr [

√
ρ
√
ρ] (17)

=

√
Tr
[
x̂2jρ
]
<∞. (18)

The first inequality follows from the Cauchy–Schwarz inequality. Similarly, |pj | = |Tr [p̂jρ] | < ∞.
Therefore, we can conclude that finite-energy states have finite mean vector.
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Now, let us prove that the elements of a covariance matrix of finite-energy states are finite. First
let us consider the diagonal terms:

σjj = 2 Tr
[(
r̂cj
)2
ρ
]

(19)

= 2 Tr
[
(r̂j − 〈r̂j〉)2 ρ

]
(20)

= 2 Tr
[
r̂2jρ+ 〈r̂j〉2ρ− 2r̂j〈r̂j〉ρ

]
(21)

= 2 Tr
[
r̂2jρ− 〈r̂j〉2ρ

]
(22)

= 2
[
〈r̂2j 〉ρ − 〈r̂j〉2ρ

]
(23)

<∞. (24)

Now, the first term of (23) is finite as seen previously, and the second term is finite since the mean
vector of the finite-energy state is finite. Therefore, we conclude that the diagonal elements of a
covariance vector of a finite-energy state are finite. Now, we consider the off-diagonal elements σjk,
where j 6= k.

|σjk| = |〈r̂cj r̂ck + r̂ckr̂
c
j〉ρ| (25)

≤ |〈r̂cj r̂ck〉ρ|+ |〈r̂ckr̂cj〉ρ| (26)

Now, consider

|〈r̂cj r̂ck〉ρ| = |Tr
[√
ρ r̂cj r̂

c
k

√
ρ
]
| (27)

≤

√
Tr

[(
r̂cj

)2
ρ

]
Tr
[(
r̂ck
)2
ρ
]

(28)

<∞ (29)

The first inequality follows from the Cauchy–Schwarz inequality, and the second inequality follows
from (19). Now, let us prove the converse. That is, if the state is a finite-energy state, then the
covariance matrix is finite.

To prove the opposite implication, consider that

Tr
(
N̂ρ
)

=

m∑
j=1

Tr [n̂jρ] (30)

=
m∑
j=1

[
Tr
[
x̂2jρ
]

+ Tr
[
p̂2jρ
]
− 1
]

(31)

<∞ (32)

The last inequality follows from the assumed finiteness of the elements of the mena vector and
covariance matrix.

Instead of writing all the 2m× 2m elements of the covariance matrix, we condense it to write the
covariance matrix as follows:

σ = Tr
[{

(r̂ − r) , (r̂ − r)†
}
ρ
]
, (33)
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where, {
(r̂ − r) , (r̂ − r)†

}
=

{r̂1 − r1, r̂1 − r1} {r̂1 − r1, r̂2 − r2} . . .
{r̂2 − r2, r̂1 − r1} {r̂2 − r2, r̂2 − r2} . . .

...
...

. . .

 . (34)

Then,

σ =

Tr [{r̂1 − r1, r̂1 − r1} ρ] Tr [{r̂1 − r1, r̂2 − r2} ρ] . . .
Tr [{r̂1 − r1, r̂2 − r2} ρ] Tr [{r̂2 − r2, r̂2 − r2} ρ] . . .

...
...

. . .

 . (35)

3 Constraints on covariance matrix

In this section, we establish certain properties of the covariance matrix. We first prove that the
covariance matrix (CM) of a vector of random variables is Hermitian and positive semi-definite
(PSD). Next, we prove that the covariance matrix of a quantum state fulfills a stronger constraint,
that is σ + iΩ ≥ 0, and that the covariance matrix is positive definite.

3.1 CM of vector of random variables is PSD

Consider a covariance matrix Σ for a vector of random variables. We now prove that the covariance
matrix is positive semi-definite.

Proposition 2. The covariance matrix of a vector of random variables is Hermitian and PSD,
that is, Σ = Σ† and Σ ≥ 0.

Proof. That the covariance matrix is Hermitian follows from the definition. We now give a
proof that the covariance matrix is PSD. Let X be a vector of random variables. Then, X =
[X1, X2, . . . , Xm]T , where Xi is a random variable and has realizations in C. Then,

Σ = E
[
(X − E(X)) (X − E(X))†

]
. (36)

Now, let w be a constant vector in Cm. Consider then

w†Σw = w†E
[
(X − E(X)) (X − E(X))†

]
w (37)

= E
[
w† (X − E(X)) (X − E(X))†w

]
(38)

= E
[
|w† (X − E(X)) |2

]
≥ 0. (39)

Since this holds for all w ∈ Cm, it follows that Σ ≥ 0.

3.2 Uncertainity principle of covariance matrix

Now, we derive an important constraint on the covariance matrix of a quantum state. This is the
uncertainity principle for the covariance matrix.
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Theorem 3. The covariance matrix σ of a quantum state fulfills the following constraint:

σ + iΩ ≥ 0. (40)

Proof. Consider the following (2m× 2m) complex matrix given by

τ = 2 Tr
[
(r̂ − r) (r̂ − r)† ρ

]
. (41)

We first prove that τ is PSD, and then deduce the statement of the theorem. Let w ∈ C2m. Then,

w†τw = 2 Trw†
[
(r̂ − r) (r̂ − r)† ρ

]
w (42)

= 2 Tr
[
w† (r̂ − r) (r̂ − r)†w ρ

]
(43)

= 2 Tr
[
ÔÔ†ρ

]
(44)

≥ 0, (45)

where Ô = w† (r̂ − r). Since Ô†Ô is PSD and so is ρ, we arrive at the last inequality. Now, the
above argument holds for all w ∈ C2m, and so we conclude that τ is PSD.

Now, consider that

2r̂j r̂k = {r̂j , r̂k}+ [r̂j , r̂k] . (46)

This implies,

2 (r̂ − r) (r̂ − r)† =
{

(r̂ − r) , (r̂ − r)†
}

+
[
(r̂ − r) , (r̂ − r)†

]
(47)

=
{

(r̂ − r) , (r̂ − r)†
}

+
[
r̂, r̂†

]
(48)

Then, we obtain the following:

τ = 2 Tr
[(

(r̂ − r) (r̂ − r)†
)
ρ
]

(49)

= Tr
[{

(r̂ − r) , (r̂ − r)†
}
ρ
]

+ Tr
[[
r̂, r̂†

]
ρ
]

(50)

= σ + iΩ ≥ 0. (51)

The last inequality follows from τ ≥ 0.

Now, we prove that σ is PSD. Note that the eigenvalues of a matrix do not change under a transpose.
So, if they are positive, then they remain positive after the transpose of the matrix. Then,

σ + iΩ ≥ 0, (52)

implies
(σ + iΩ)T ≥ 0. (53)

which in turn implies,
σ − iΩ ≥ 0. (54)

Then combining (54) with (52), we obtain that σ ≥ 0. That is, σ is a PSD.
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3.3 CM of quantum states is positive definite

We now prove that a quantum covariance matrix is in fact positive definite. This makes them more
special and easier to work mathematically than classical covariance matrices.

Proposition 4. A quantum covariance matrix is positive definite.

Proof. We prove this statement by contradiction. Let us assume that the quantum covariance
matrix is not positive definite. That is, ∃ a real, non-zero vector ψ ∈ R2m, such that σ |ψ〉 = 0.
Then, for ε ∈ R, set ψ(ε) = (I + εiΩ)ψ. By invoking the following assumption σψ = 0, and the
following facts: ψTΩψ = 0∀ψ ∈ R2m and (iΩ)2 = I, we find that

ψ(ε)† (σ + iΩ)ψ(ε)

= ψT (I + εiΩ) (σ + iΩ) (I + εiΩ)ψ (55)

= ψT (I + εiΩ) (iΩ + εσiΩ + εI)ψ (56)

= ψT (iΩ + εσiΩ + εI + εiΩ (iΩ + εσiΩ + εI))ψ (57)

= ψT
(
iΩ + εσiΩ + 2εI + ε2ΩTσΩ + ε2iΩ

)
ψ (58)

= ψT
(
2εI + ε2ΩTσΩ

)
ψ (59)

= 2εψTψ + ε2 (Ωψ)T σ (Ωψ) (60)

Now, suppose that (Ωψ)T σ (Ωψ) = 0. Then picking ε < 0, implies that 2εψTψ < 0, which
contradicts the fact that σ + iΩ ≥ 0 for any quantum covariance matrix σ.

Now, suppose that (Ωψ)T σ (Ωψ) > 0. Then pick ε < 0 and such that

|ε| ≤ 2ψTψ

(Ωψ)T σ (Ωψ)
. (61)

This implies,
2εψTψ + ε2 (Ωψ)T σ (Ωψ) < 0, (62)

and there exists ψ(ε) such that
ψ(ε)† (σ + iΩ)ψ(ε) < 0, (63)

again contradicting the assumption that σ + iΩ ≥ 0. Hence, σ must be positive definite.

3.4 Uncertainity principle for a single-mode bosonic state

The covariance matrix of a single-mode bosonic state is given as

σ =

[
2〈(x̂c)2〉ρ 〈{x̂c, p̂c}〉ρ
〈{x̂c, p̂c}〉ρ 2〈(p̂c)2〉ρ

]
=

[
σ11 σ12
σ21 σ22

]
. (64)

The 2 × 2 matrix σ is the covariance matrix of a single-mode bosonic system if and only if the
following constraint holds

σ + iΩ ≥ 0 ⇐⇒ det(σ) ≥ 1 and σ > 0. (65)

6



The forward direction of the above statement is easy to prove. We have already shown

σ + iΩ ≥ 0 =⇒ σ > 0. (66)

Now we prove that
σ + iΩ ≥ 0 =⇒ det(σ) ≥ 1. (67)

The constraint σ + iΩ ≥ 0 implies that

det(σ + iΩ) = σ11σ22 − (σ212 + 1) ≥ 0. (68)

We thus see that det(σ) ≥ 1.
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