> PHYS 7895: Gaussian Quantum Information Lecture 6 Lecturer: Mark M. Wilde

This document is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Unported License.

1 Overview

In the last lecture, we developed the background required to study single-mode bosonic systems. We studied creation, annihilation, position, and momentum operators and their properties. We then extended the above for multiple-mode bosonic systems, and introduced the canonical symplectic form.

In this lecture, we will introduce the mean vector in Section 2.1 and the covariance matrix of a bosonic state in Section 2.2. We will then derive constraints that are fulfilled by a covariance matrix of a bosonic state in Section 3.

2 Mean vector and covariance matrix

Consider the vector \hat{r} of canonical quadrature operators for an m-mode bosonic system:

$$
\begin{equation*}
\hat{r} \equiv\left(\hat{x}_{1}, \hat{p}_{1} \ldots, \hat{x}_{m}, \hat{p}_{m}\right)^{T} \tag{1}
\end{equation*}
$$

where \hat{x} refers to the position-quadrature operator and \hat{p} refers to the momentum-quadrature operator.

2.1 Mean vector

For a state ρ of multiple modes, the mean vector \bar{r} is given by

$$
\begin{equation*}
\bar{r}=\left(\bar{x}_{1}, \bar{p}_{1}, \ldots, \bar{x}_{m}, \bar{p}_{m}\right) \tag{2}
\end{equation*}
$$

where the components of the mean vector are defined as follows:

$$
\begin{align*}
& \bar{x}_{1}=\operatorname{Tr}\left[\hat{x}_{1} \rho\right]=\operatorname{Tr}\left[\left(\hat{x}_{1} \otimes \hat{I} \otimes \ldots \hat{I}\right) \rho\right], \tag{3}\\
& \bar{p}_{1}=\operatorname{Tr}\left[\hat{p}_{1} \rho\right]=\operatorname{Tr}\left[\left(\hat{I} \otimes \hat{p}_{1} \otimes \hat{I} \otimes \ldots \hat{I}\right) \rho\right], \tag{4}\\
& \bar{x}_{j}=\operatorname{Tr}\left[\hat{x}_{j} \rho\right]=\left\langle\hat{x}_{j}\right\rangle_{\rho}, \tag{5}\\
& \bar{p}_{j}=\operatorname{Tr}\left[\hat{p}_{j} \rho\right]=\left\langle\hat{p}_{j}\right\rangle_{\rho}, \tag{6}
\end{align*}
$$

where \hat{I} is the identity operator and $j \in\{1,2, \ldots m\}$. Then, as a shorthand we can write the mean vector as

$$
\begin{equation*}
\bar{r}=\operatorname{Tr}[\hat{r} \rho]=\left(\operatorname{Tr}\left[\hat{x}_{1} \rho\right], \operatorname{Tr}\left[\hat{p}_{1} \rho\right], \ldots, \operatorname{Tr}\left[\hat{x}_{n} \rho\right], \operatorname{Tr}\left[\hat{p}_{n} \rho\right]\right)^{T} \tag{7}
\end{equation*}
$$

Just like classical probability distributions need not have a finite mean, a quantum state need not have a finite mean.

2.2 Covariance matrix

Let us denote the covariance matrix of a quantum state by σ, and let the entries be given by $\sigma_{j k}$. Let \hat{r}_{j} be the j th element of \hat{r}, where $j \in\{1, \ldots 2 m\}$, and m is the number of modes of the quantum state considered. Let us define $\hat{r}_{j}^{c}=\hat{r}_{j}-\left\langle\hat{r}_{j}\right\rangle_{\rho}$. Then, the covariance matrix elements are defined as

$$
\begin{align*}
\sigma_{j k} & =\operatorname{Tr}\left[\left(\hat{r}_{j}^{c} \hat{r}_{k}^{c}+\hat{r}_{k}^{c} \hat{r}_{j}^{c}\right) \rho\right] \tag{8}\\
& =\operatorname{Tr}\left[\left\{\hat{r}_{j}^{c}, \hat{r}_{k}^{c}\right\} \rho\right] \tag{9}\\
& =\left\langle\left\{\hat{r}_{j}^{c}, \hat{r}_{k}^{c}\right\}\right\rangle_{\rho} \tag{10}
\end{align*}
$$

where $\sigma_{j k} \in \mathbb{R}$ and $k \in\{1, \ldots, 2 m\}$.
Now, consider the total photon number operator

$$
\begin{equation*}
\hat{N}=\sum_{j=1}^{m} \hat{n}_{j} \tag{11}
\end{equation*}
$$

where $\hat{n}_{j}=\hat{a}_{j}^{\dagger} \hat{a}_{j}$. Let us define finite-energy state as the states that fulfill the following constraint:

$$
\begin{equation*}
\operatorname{Tr}[\hat{N} \rho]<\infty \tag{12}
\end{equation*}
$$

Proposition 1. A state has finite energy iff the elements of \bar{r} and σ are finite, that is $\bar{r}_{j}<\infty$ and $\sigma_{j k}<\infty$.

Proof. Let us first prove that if the state ρ has finite energy then the elements of its mean vector \bar{r} and covariance matrix σ are finite. The definition of a finite-energy state implies

$$
\begin{equation*}
\operatorname{Tr}\left[\hat{n}_{j} \rho\right]<\infty \tag{13}
\end{equation*}
$$

Then observe that,

$$
\begin{equation*}
\operatorname{Tr}\left[\hat{n}_{j} \rho\right]=\frac{1}{2} \operatorname{Tr}\left[\left(\hat{x}_{j}^{2}+\hat{p}_{j}^{2}-1\right) \rho\right]<\infty \tag{14}
\end{equation*}
$$

This implies, $\operatorname{Tr}\left[\hat{x}_{j}^{2} \rho\right], \operatorname{Tr}\left[\hat{p}_{j}^{2} \rho\right]<\infty$. Then, we conclude the following:

$$
\begin{align*}
\left|\bar{x}_{j}\right| & =\left|\operatorname{Tr}\left[\hat{x}_{j} \rho\right]\right| \tag{15}\\
& =|\operatorname{Tr}[\hat{x} \sqrt{\rho} \sqrt{\rho}]| \tag{16}\\
& \leq \sqrt{\operatorname{Tr}\left[\hat{x}_{j} \sqrt{\rho} \sqrt{\rho} \hat{x}_{j}\right] \cdot \operatorname{Tr}[\sqrt{\rho} \sqrt{\rho}]} \tag{17}\\
& =\sqrt{\operatorname{Tr}\left[\hat{x}_{j}^{2} \rho\right]}<\infty . \tag{18}
\end{align*}
$$

The first inequality follows from the Cauchy-Schwarz inequality. Similarly, $\left|\bar{p}_{j}\right|=\left|\operatorname{Tr}\left[\hat{p}_{j} \rho\right]\right|<\infty$. Therefore, we can conclude that finite-energy states have finite mean vector.

Now, let us prove that the elements of a covariance matrix of finite-energy states are finite. First let us consider the diagonal terms:

$$
\begin{align*}
\sigma_{j j} & =2 \operatorname{Tr}\left[\left(\hat{r}_{j}^{c}\right)^{2} \rho\right] \tag{19}\\
& =2 \operatorname{Tr}\left[\left(\hat{r}_{j}-\left\langle\hat{r}_{j}\right\rangle\right)^{2} \rho\right] \tag{20}\\
& =2 \operatorname{Tr}\left[\hat{r}_{j}^{2} \rho+\left\langle\hat{r}_{j}\right\rangle^{2} \rho-2 \hat{r}_{j}\left\langle\hat{r}_{j}\right\rangle \rho\right] \tag{21}\\
& =2 \operatorname{Tr}\left[\hat{r}_{j}^{2} \rho-\left\langle\hat{r}_{j}\right\rangle^{2} \rho\right] \tag{22}\\
& =2\left[\left\langle\hat{r}_{j}^{2}\right\rangle_{\rho}-\left\langle\hat{r}_{j}\right\rangle_{\rho}^{2}\right] \tag{23}\\
& <\infty . \tag{24}
\end{align*}
$$

Now, the first term of (23) is finite as seen previously, and the second term is finite since the mean vector of the finite-energy state is finite. Therefore, we conclude that the diagonal elements of a covariance vector of a finite-energy state are finite. Now, we consider the off-diagonal elements $\sigma_{j k}$, where $j \neq k$.

$$
\begin{align*}
\left|\sigma_{j k}\right| & =\left|\left\langle\hat{r}_{j}^{c} \hat{r}_{k}^{c}+\hat{r}_{k}^{c} \hat{r}_{j}^{c}\right\rangle_{\rho}\right| \tag{25}\\
& \leq\left|\left\langle\hat{r}_{j} \hat{r}_{k}^{c}\right\rangle_{\rho}\right|+\left|\left\langle\hat{r}_{k}^{c} \hat{r}_{j}^{c}\right\rangle_{\rho}\right| \tag{26}
\end{align*}
$$

Now, consider

$$
\begin{align*}
\left|\left\langle\hat{r}_{j}^{c} \hat{r}_{k}^{c}\right\rangle_{\rho}\right| & =\left|\operatorname{Tr}\left[\sqrt{\rho} \hat{r}_{j}^{c} \hat{r}_{k}^{c} \sqrt{\rho}\right]\right| \tag{27}\\
& \leq \sqrt{\operatorname{Tr}\left[\left(\hat{r}_{j}^{c}\right)^{2} \rho\right] \operatorname{Tr}\left[\left(\hat{r}_{k}^{c}\right)^{2} \rho\right]} \tag{28}\\
& <\infty \tag{29}
\end{align*}
$$

The first inequality follows from the Cauchy-Schwarz inequality, and the second inequality follows from (19). Now, let us prove the converse. That is, if the state is a finite-energy state, then the covariance matrix is finite.

To prove the opposite implication, consider that

$$
\begin{align*}
\operatorname{Tr}(\hat{N} \rho) & =\sum_{j=1}^{m} \operatorname{Tr}\left[\hat{n}_{j} \rho\right] \tag{30}\\
& =\sum_{j=1}^{m}\left[\operatorname{Tr}\left[\hat{x}_{j}^{2} \rho\right]+\operatorname{Tr}\left[\hat{p}_{j}^{2} \rho\right]-1\right] \tag{31}\\
& <\infty \tag{32}
\end{align*}
$$

The last inequality follows from the assumed finiteness of the elements of the mena vector and covariance matrix.

Instead of writing all the $2 m \times 2 m$ elements of the covariance matrix, we condense it to write the covariance matrix as follows:

$$
\begin{equation*}
\sigma=\operatorname{Tr}\left[\left\{(\hat{r}-\bar{r}),(\hat{r}-\bar{r})^{\dagger}\right\} \rho\right], \tag{33}
\end{equation*}
$$

where,

$$
\left\{(\hat{r}-\bar{r}),(\hat{r}-\bar{r})^{\dagger}\right\}=\left[\begin{array}{ccc}
\left\{\hat{r}_{1}-\bar{r}_{1}, \hat{r}_{1}-\bar{r}_{1}\right\} & \left\{\hat{r}_{1}-\bar{r}_{1}, \hat{r}_{2}-\bar{r}_{2}\right\} & \ldots \tag{34}\\
\left\{\hat{r}_{2}-\bar{r}_{2}, \hat{r}_{1}-\bar{r}_{1}\right\} & \left\{\hat{r}_{2}-\bar{r}_{2}, \hat{r}_{2}-\bar{r}_{2}\right\} & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right] .
$$

Then,

$$
\sigma=\left[\begin{array}{ccc}
\operatorname{Tr}\left[\left\{\hat{r}_{1}-\bar{r}_{1}, \hat{r}_{1}-\bar{r}_{1}\right\} \rho\right] & \operatorname{Tr}\left[\left\{\hat{r}_{1}-\bar{r}_{1}, \hat{r}_{2}-\bar{r}_{2}\right\} \rho\right] & \ldots \tag{35}\\
\operatorname{Tr}\left[\left\{\hat{r}_{1}-\bar{r}_{1}, \hat{r}_{2}-\bar{r}_{2}\right\} \rho\right] & \operatorname{Tr}\left[\left\{\hat{r}_{2}-\bar{r}_{2}, \hat{r}_{2}-\bar{r}_{2}\right\} \rho\right] & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right]
$$

3 Constraints on covariance matrix

In this section, we establish certain properties of the covariance matrix. We first prove that the covariance matrix (CM) of a vector of random variables is Hermitian and positive semi-definite (PSD). Next, we prove that the covariance matrix of a quantum state fulfills a stronger constraint, that is $\sigma+i \Omega \geq 0$, and that the covariance matrix is positive definite.

3.1 CM of vector of random variables is PSD

Consider a covariance matrix Σ for a vector of random variables. We now prove that the covariance matrix is positive semi-definite.

Proposition 2. The covariance matrix of a vector of random variables is Hermitian and PSD, that is, $\Sigma=\Sigma^{\dagger}$ and $\Sigma \geq 0$.

Proof. That the covariance matrix is Hermitian follows from the definition. We now give a proof that the covariance matrix is PSD. Let X be a vector of random variables. Then, $X=$ $\left[X_{1}, X_{2}, \ldots, X_{m}\right]^{T}$, where X_{i} is a random variable and has realizations in \mathbb{C}. Then,

$$
\begin{equation*}
\Sigma=\mathbb{E}\left[(X-\mathbb{E}(X))(X-\mathbb{E}(X))^{\dagger}\right] \tag{36}
\end{equation*}
$$

Now, let \underline{w} be a constant vector in \mathbb{C}^{m}. Consider then

$$
\begin{align*}
\underline{w}^{\dagger} \Sigma \underline{w} & =\underline{w}^{\dagger} \mathbb{E}\left[(X-\mathbb{E}(X))(X-\mathbb{E}(X))^{\dagger}\right] \underline{w} \tag{37}\\
& =\mathbb{E}\left[\underline{w}^{\dagger}(X-\mathbb{E}(X))(X-\mathbb{E}(X))^{\dagger} \underline{w}\right] \tag{38}\\
& =\mathbb{E}\left[\left|w^{\dagger}(X-\mathbb{E}(X))\right|^{2}\right] \geq 0 \tag{39}
\end{align*}
$$

Since this holds for all $w \in \mathbb{C}^{m}$, it follows that $\Sigma \geq 0$.

3.2 Uncertainity principle of covariance matrix

Now, we derive an important constraint on the covariance matrix of a quantum state. This is the uncertainity principle for the covariance matrix.

Theorem 3. The covariance matrix σ of a quantum state fulfills the following constraint:

$$
\begin{equation*}
\sigma+i \Omega \geq 0 \tag{40}
\end{equation*}
$$

Proof. Consider the following $(2 m \times 2 m)$ complex matrix given by

$$
\tau=2 \operatorname{Tr}\left[\begin{array}{ll}
(\hat{r}-\bar{r}) & \left.(\hat{r}-\bar{r})^{\dagger} \rho\right] . \tag{41}
\end{array}\right.
$$

We first prove that τ is PSD, and then deduce the statement of the theorem. Let $\underline{w} \in \mathbb{C}^{2 m}$. Then,

$$
\begin{align*}
\underline{w}^{\dagger} \tau \underline{w} & =2 \operatorname{Tr} \underline{w}^{\dagger}\left[\begin{array}{ll}
(\hat{r}-\bar{r}) & \left.(\hat{r}-\bar{r})^{\dagger} \rho\right] \underline{w} \\
& =2 \operatorname{Tr}\left[\underline{w}^{\dagger}(\hat{r}-\bar{r})(\hat{r}-\bar{r})^{\dagger} \underline{w} \rho\right] \\
& =2 \operatorname{Tr}\left[\hat{O} \hat{O}^{\dagger} \rho\right] \\
& \geq 0
\end{array}\right. \tag{42}
\end{align*}
$$

where $\hat{O}=\underline{w}^{\dagger}(\hat{r}-\bar{r})$. Since $\hat{O}^{\dagger} \hat{O}$ is PSD and so is ρ, we arrive at the last inequality. Now, the above argument holds for all $\underline{w} \in \mathbb{C}^{2 m}$, and so we conclude that τ is PSD.

Now, consider that

$$
\begin{equation*}
2 \hat{r}_{j} \hat{r}_{k}=\left\{\hat{r}_{j}, \hat{r}_{k}\right\}+\left[\hat{r}_{j}, \hat{r}_{k}\right] . \tag{46}
\end{equation*}
$$

This implies,

$$
\begin{align*}
2(\hat{r}-\bar{r})(\hat{r}-\bar{r})^{\dagger} & =\left\{(\hat{r}-\bar{r}),(\hat{r}-\bar{r})^{\dagger}\right\}+\left[(\hat{r}-\bar{r}),(\hat{r}-\bar{r})^{\dagger}\right] \tag{47}\\
& =\left\{(\hat{r}-\bar{r}),(\hat{r}-\bar{r})^{\dagger}\right\}+\left[\hat{r}, \hat{r}^{\dagger}\right] \tag{48}
\end{align*}
$$

Then, we obtain the following:

$$
\begin{align*}
\tau & =2 \operatorname{Tr}\left[\left((\hat{r}-\bar{r})(\hat{r}-\bar{r})^{\dagger}\right) \rho\right] \tag{49}\\
& =\operatorname{Tr}\left[\left\{(\hat{r}-\bar{r}),(\hat{r}-\bar{r})^{\dagger}\right\} \rho\right]+\operatorname{Tr}\left[\left[\hat{r}, \hat{r}^{\dagger}\right] \rho\right] \tag{50}\\
& =\sigma+i \Omega \geq 0 \tag{51}
\end{align*}
$$

The last inequality follows from $\tau \geq 0$.

Now, we prove that σ is PSD. Note that the eigenvalues of a matrix do not change under a transpose. So, if they are positive, then they remain positive after the transpose of the matrix. Then,

$$
\begin{equation*}
\sigma+i \Omega \geq 0 \tag{52}
\end{equation*}
$$

implies

$$
\begin{equation*}
(\sigma+i \Omega)^{T} \geq 0 \tag{53}
\end{equation*}
$$

which in turn implies,

$$
\begin{equation*}
\sigma-i \Omega \geq 0 \tag{54}
\end{equation*}
$$

Then combining (54) with (52), we obtain that $\sigma \geq 0$. That is, σ is a PSD.

3.3 CM of quantum states is positive definite

We now prove that a quantum covariance matrix is in fact positive definite. This makes them more special and easier to work mathematically than classical covariance matrices.

Proposition 4. A quantum covariance matrix is positive definite.

Proof. We prove this statement by contradiction. Let us assume that the quantum covariance matrix is not positive definite. That is, \exists a real, non-zero vector $\psi \in \mathbb{R}^{2 m}$, such that $\sigma|\psi\rangle=0$. Then, for $\varepsilon \in \mathbb{R}$, set $\psi(\varepsilon)=(I+\varepsilon i \Omega) \psi$. By invoking the following assumption $\sigma \psi=0$, and the following facts: $\psi^{T} \Omega \psi=0 \forall \psi \in \mathbb{R}^{2 m}$ and $(i \Omega)^{2}=I$, we find that

$$
\begin{align*}
& \psi(\varepsilon)^{\dagger}(\sigma+i \Omega) \psi(\varepsilon) \\
& =\psi^{T}(I+\varepsilon i \Omega)(\sigma+i \Omega)(I+\varepsilon i \Omega) \psi \tag{55}\\
& =\psi^{T}(I+\varepsilon i \Omega)(i \Omega+\varepsilon \sigma i \Omega+\varepsilon I) \psi \tag{56}\\
& =\psi^{T}(i \Omega+\varepsilon \sigma i \Omega+\varepsilon I+\varepsilon i \Omega(i \Omega+\varepsilon \sigma i \Omega+\varepsilon I)) \psi \tag{57}\\
& =\psi^{T}\left(i \Omega+\varepsilon \sigma i \Omega+2 \varepsilon I+\varepsilon^{2} \Omega^{T} \sigma \Omega+\varepsilon^{2} i \Omega\right) \psi \tag{58}\\
& =\psi^{T}\left(2 \varepsilon I+\varepsilon^{2} \Omega^{T} \sigma \Omega\right) \psi \tag{59}\\
& =2 \varepsilon \psi^{T} \psi+\varepsilon^{2}(\Omega \psi)^{T} \sigma(\Omega \psi) \tag{60}
\end{align*}
$$

Now, suppose that $(\Omega \psi)^{T} \sigma(\Omega \psi)=0$. Then picking $\varepsilon<0$, implies that $2 \varepsilon \psi^{T} \psi<0$, which contradicts the fact that $\sigma+i \Omega \geq 0$ for any quantum covariance matrix σ.

Now, suppose that $(\Omega \psi)^{T} \sigma(\Omega \psi)>0$. Then pick $\varepsilon<0$ and such that

$$
\begin{equation*}
|\varepsilon| \leq \frac{2 \psi^{T} \psi}{(\Omega \psi)^{T} \sigma(\Omega \psi)} \tag{61}
\end{equation*}
$$

This implies,

$$
\begin{equation*}
2 \varepsilon \psi^{T} \psi+\varepsilon^{2}(\Omega \psi)^{T} \sigma(\Omega \psi)<0 \tag{62}
\end{equation*}
$$

and there exists $\psi(\varepsilon)$ such that

$$
\begin{equation*}
\psi(\varepsilon)^{\dagger}(\sigma+i \Omega) \psi(\varepsilon)<0, \tag{63}
\end{equation*}
$$

again contradicting the assumption that $\sigma+i \Omega \geq 0$. Hence, σ must be positive definite.

3.4 Uncertainity principle for a single-mode bosonic state

The covariance matrix of a single-mode bosonic state is given as

$$
\sigma=\left[\begin{array}{cc}
2\left\langle\left(\hat{x}^{c}\right)^{2}\right\rangle_{\rho} & \left\langle\left\{\hat{x}^{c}, \hat{p}^{c}\right\}\right\rangle_{\rho} \tag{64}\\
\left\langle\left\{\hat{x}^{c}, \hat{p}^{c}\right\}\right\rangle_{\rho} & 2\left\langle\left(\hat{p}^{c}\right)^{2}\right\rangle_{\rho}
\end{array}\right]=\left[\begin{array}{cc}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{array}\right] .
$$

The 2×2 matrix σ is the covariance matrix of a single-mode bosonic system if and only if the following constraint holds

$$
\begin{equation*}
\sigma+i \Omega \geq 0 \Longleftrightarrow \operatorname{det}(\sigma) \geq 1 \text { and } \sigma>0 . \tag{65}
\end{equation*}
$$

The forward direction of the above statement is easy to prove. We have already shown

$$
\begin{equation*}
\sigma+i \Omega \geq 0 \Longrightarrow \sigma>0 \tag{66}
\end{equation*}
$$

Now we prove that

$$
\begin{equation*}
\sigma+i \Omega \geq 0 \Longrightarrow \operatorname{det}(\sigma) \geq 1 \tag{67}
\end{equation*}
$$

The constraint $\sigma+i \Omega \geq 0$ implies that

$$
\begin{equation*}
\operatorname{det}(\sigma+i \Omega)=\sigma_{11} \sigma_{22}-\left(\sigma_{12}^{2}+1\right) \geq 0 \tag{68}
\end{equation*}
$$

We thus see that $\operatorname{det}(\sigma) \geq 1$.

