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1 Overview

In the last lecture, we discuss continuous functional calculus, polar decomposition of compact
bounded operators, unitary operators, exponential maps, trace-class operators, trace norm, Hilbert–
Schmidt operators.

In this lecture, we discuss norm topology, weak operator topology, spectral and singular value
decompositions for compact operators, duality of trace-class and bounded operators, effects, partial
trace, quantum channels, Stinespring dilations, and operator-norm forms. We point readers to
[HZ11, Att] for background on topics covered in this lecture.

2 Different notions of convergence

In this section, we discuss different notions of convergence for a sequence of bounded operators to
another bounded operator.

Definition 1 (Convergence with respect to uniform topology). Let {Tn}n ⊂ L(H) denote sequence
of bounded operators and let T ∈ L(H) be a bounded operator. Then the sequence {Tn}n converges
to T with respect to the uniform or norm topology if

lim
n→∞

‖Tn − T‖ = 0 . (1)

Definition 2 (Convergence with respect to weak operator topology). Let {Tn}n ⊂ L(H) denote
sequence of bounded operators and let T ∈ L(H) be a bounded operator. Then the sequence {Tn}n
converges to T with respect to the weak operator topology if for all ψ, φ ∈ H

lim
n→∞

|〈φ|Tnψ〉 − 〈φ|Tψ〉| = 0 (2)

Proposition 3. If a sequence {Tj}j ⊂ L(H) converges to T ∈ L(H) in norm topology, then it also
converges to T weakly.

Proof. For all ψ, φ ∈ H, we have that

|〈φ|Tjψ〉 − 〈φ|Tψ〉| = |〈φ|(Tj − T )|ψ〉| (3)

≤ ‖φ‖‖ψ‖‖Tj − T‖. (4)

The equality follows from the linearity of operators. The inequality follows from Cauchy-Schwarz
inequality and from the definition of the operator norm.

Therefore, if limj→∞ ‖Tj − T‖ = 0, then it follows that limj→∞ |〈φ|Tjψ〉 − 〈φ|Tψ〉| = 0.
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We now show an example of a sequence of operators that converges to another operator weakly but
does not converge in norm topology.

Example 4. Let {Πj}j be a sequence of orthogonal projections. Let {φj}∞j=1 be an orthonormal
basis. Then Πj is projection onto span{φk : k ∈ {1, . . . , j}}. Then consider that

|〈ϕ|Πjψ〉 − 〈ϕ|ψ〉| = |〈ϕ|(I −Πj)|ψ〉|. (5)

We now write |ψ〉 as |ψ〉 =
∑∞

j=1 αj |φj〉. Then (I −Πj)|ψ〉 =
∑∞

l=j+1 αl|φl〉, so that

|〈ϕ|(I −Πj)|ψ〉| = |〈φ|
∞∑

l=j+1

αl|φl〉| (6)

≤ ‖φ‖
∞∑

l=j+1

|αl|2. (7)

Since limj→∞
∑∞

l=j+1 |αl|2 = 0, it implies that {Πj}j converges to I in weak operator topology.

On the other hand, for a fixed j, ‖I − Πj‖ = 1, by picking some unit vector in the space spanned
by I −Πj . Therefore,

lim
j→∞

‖I −Πj‖ = 1, (8)

which implies that {Πj}j does not converge to I in norm topology.

Definition 5 (Equivalence of two bounded operators). For operators A,B ∈ L(H), if A = B, then
it should be understood in the weak sense, i.e., 〈φ|Aψ〉 = 〈φ|Bψ〉, ∀φ, ψ ∈ H.

3 Duality of bounded operators and trace class operators

Definition 6 (Linear functional). A linear mapping f from a complex vector space V to C is called
a linear functional.

Definition 7 (Dual space of a vector space). Let V denote a normed vector space and let V ∗

denote the set of all continuous linear functionals. Then V ∗ is called the dual space of V .

A norm on V ∗ is defined as

‖f‖ = sup
‖v‖=1

|f(v)|. (9)

Theorem 8 (Riesz representation theorem). Let f ∈ H∗. Then there exists a unique vector φ ∈ H
such that f(ψ) = 〈φ|ψ〉. Moreover, ‖f‖ = ‖φ‖.

We now extend the discussion on the dual space of trace-class operators. Let S ∈ L(H) and let
T ∈ T (H). Then a linear functional fS on T (H) can be defined as

fS(T ) = Tr{ST} . (10)
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Theorem 9. The mapping S → fS is a linear bijection from L(H) to T (H)∗, and ‖S‖ = ‖fS‖,∀S ∈
L(H).

Moreover, we can conclude the following:

1. S ≥ 0 ⇔ fS(T ) ≥ 0, ∀T ≥ 0.

2. S = S† ⇔ fS(T ) ∈ R,∀T = T †.

4 Quantum Mechanics

4.1 Quantum states

A set S(H) of quantum states is defined as

S(H) = {ρ ∈ T (H) : ρ ≥ 0, Tr{ρ} = 1}. (11)

Theorem 10. A quantum state ρ ∈ S(H) has a canonical convex decomposition of the form

ρ =
∑
j

λjPj , (12)

where {λj}j is a finite or an infinite sequence of positive numbers, such that
∑

j λj = 1, and {Pj}j
is a set of orthogonal projections.

4.2 Effect

Effect is a mapping from the set of states S(H) to the interval [0, 1], i.e., ρ → E(ρ) ∈ [0, 1]. E(ρ)
is the probability of a “yes” answer to “the recorded measurement outcome belongs to a subset
X ⊂ Ω.”

Basic assumption behind an effect is the following:

E(λρ1 + (1− λ)ρ2) = λE(ρ1) + (1− λ)E(ρ2), ∀ρ1, ρ2 ∈ S(H), λ ∈ [0, 1], (13)

Proposition 11. Let E be an effect. Then there exists Ê ∈ LS(H) such that E(ρ) = Tr[Êρ],∀ρ ∈
S(H), where 0 ≤ Ê ≤ I.

4.3 Partial trace

Definition 12 (Partial trace). TrA : T (HA ⊗HB)→ T (HB) is a linear mapping satisfying

Tr{TrA{TAB}EB} = Tr{TAB(IA ⊗ EB)}, (14)

∀TAB ∈ T (HA ⊗HB) and EB ∈ L(HB).
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The partial trace can be calculated as follows. Let {ψj}j and {φk}k denote orthonormal bases for
HA and HB, respectively. Then

TrA{T} =
∑
j,k,n

[
〈ψj |A ⊗ 〈φk|BTAB|ψj〉A ⊗ |φn〉B

]
|φk〉〈φn|B. (15)

4.4 State Purification

Let ρA ∈ S(H) denote a quantum state. Then a purification of ρA is a vector |ψ〉RA ∈ HR ⊗ HA

such that TrR{|ψ〉〈ψ|RA} = ρA.

A purification of ρA can be constructed from the spectral decomposition of ρA.

ρ =
∑
j

λj |ψj〉〈ψj |A , (16)

where {|ψj〉}j is an orthonormal basis, as

|ψ〉RA =
∑
j

√
λj |ψj〉R|ψj〉A. (17)

4.5 Quantum channels

Definition 13 (Positivity of a linear map). A linear mapping NA→B : T (HA)→ T (HB) is positive
if N (T ) ≥ 0, ∀T ≥ 0, T ∈ T (H).

Definition 14 (Complete positivity of a linear map). A linear map NA→B : T (HA) → T (HB) is
completely positive if idR ⊗NA→B is positive for all finite-dimensional HR.

Definition 15 (Quantum channel). A linear map NA→B : T (HA)→ T (HB) is a quantum channel
if it is completely positive and trace preserving.

Definition 16 (Adjoint of a linear map). Let NA→B : T (HA) → T (HB) be a linear map. The
adjoint N † : L(HB)→ L(HA) of a linear map N is a unique linear map satisfying the following set
of equations:

Tr{N (T )E} = Tr{TN †(E)}, (18)

∀T ∈ T (H) and E ∈ L(H).

4.5.1 Stinespring dilation

Definition 17. Let HA, HB and HE be Hilbert spaces, and let N : T (HA) → T (HB) be a
quantum chanenel. An isometric extension or Stinespring dilation V ∈ L(HA) → L(HB ⊗HE) of
the channel N is a linear isometry such that

N (XA) = TrE [V XAV
†], (19)

for all XA ∈ T (HA).
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4.5.2 Operator-sum form

Proposition 18. A map N : T (HA)→ T (HB) is a quantum channel if and only if there exists a
sequence of bounded operators {Ak}k such that

N (T ) =
∑
k

AkTA
†
k, (20)

∑
k A
†
kAk = I, ∀T ∈ T (HA).
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