PHYS 7895: Gaussian Quantum Information

Lecture 4
Lecturer: Mark M. Wilde
Scribe: Kunal Sharma

This document is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Unported License.

1 Overview

In the last lecture, we discuss continuous functional calculus, polar decomposition of compact bounded operators, unitary operators, exponential maps, trace-class operators, trace norm, HilbertSchmidt operators.

In this lecture, we discuss norm topology, weak operator topology, spectral and singular value decompositions for compact operators, duality of trace-class and bounded operators, effects, partial trace, quantum channels, Stinespring dilations, and operator-norm forms. We point readers to [HZ11, Att for background on topics covered in this lecture.

2 Different notions of convergence

In this section, we discuss different notions of convergence for a sequence of bounded operators to another bounded operator.
Definition 1 (Convergence with respect to uniform topology). Let $\left\{T_{n}\right\}_{n} \subset \mathcal{L}(\mathcal{H})$ denote sequence of bounded operators and let $T \in \mathcal{L}(\mathcal{H})$ be a bounded operator. Then the sequence $\left\{T_{n}\right\}_{n}$ converges to T with respect to the uniform or norm topology if

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{n}-T\right\|=0 \tag{1}
\end{equation*}
$$

Definition 2 (Convergence with respect to weak operator topology). Let $\left\{T_{n}\right\}_{n} \subset \mathcal{L}(\mathcal{H})$ denote sequence of bounded operators and let $T \in \mathcal{L}(\mathcal{H})$ be a bounded operator. Then the sequence $\left\{T_{n}\right\}_{n}$ converges to T with respect to the weak operator topology if for all $\psi, \phi \in \mathcal{H}$

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\left\langle\phi \mid T_{n} \psi\right\rangle-\langle\phi \mid T \psi\rangle\right|=0 \tag{2}
\end{equation*}
$$

Proposition 3. If a sequence $\left\{T_{j}\right\}_{j} \subset \mathcal{L}(\mathcal{H})$ converges to $T \in \mathcal{L}(\mathcal{H})$ in norm topology, then it also converges to T weakly.

Proof. For all $\psi, \phi \in \mathcal{H}$, we have that

$$
\begin{align*}
\left|\left\langle\phi \mid T_{j} \psi\right\rangle-\langle\phi \mid T \psi\rangle\right| & \left.=\left|\langle\phi|\left(T_{j}-T\right)\right| \psi\right\rangle \mid \tag{3}\\
& \leq\|\phi\|\|\psi\|\left\|T_{j}-T\right\| . \tag{4}
\end{align*}
$$

The equality follows from the linearity of operators. The inequality follows from Cauchy-Schwarz inequality and from the definition of the operator norm.

Therefore, if $\lim _{j \rightarrow \infty}\left\|T_{j}-T\right\|=0$, then it follows that $\lim _{j \rightarrow \infty}\left|\left\langle\phi \mid T_{j} \psi\right\rangle-\langle\phi \mid T \psi\rangle\right|=0$.

We now show an example of a sequence of operators that converges to another operator weakly but does not converge in norm topology.

Example 4. Let $\left\{\Pi_{j}\right\}_{j}$ be a sequence of orthogonal projections. Let $\left\{\phi_{j}\right\}_{j=1}^{\infty}$ be an orthonormal basis. Then Π_{j} is projection onto $\operatorname{span}\left\{\phi_{k}: k \in\{1, \ldots, j\}\right\}$. Then consider that

$$
\begin{equation*}
\left.\left|\left\langle\varphi \mid \Pi_{j} \psi\right\rangle-\langle\varphi \mid \psi\rangle\right|=\left|\langle\varphi|\left(I-\Pi_{j}\right)\right| \psi\right\rangle \mid . \tag{5}
\end{equation*}
$$

We now write $|\psi\rangle$ as $|\psi\rangle=\sum_{j=1}^{\infty} \alpha_{j}\left|\phi_{j}\right\rangle$. Then $\left(I-\Pi_{j}\right)|\psi\rangle=\sum_{l=j+1}^{\infty} \alpha_{l}\left|\phi_{l}\right\rangle$, so that

$$
\begin{align*}
\left.\left|\langle\varphi|\left(I-\Pi_{j}\right)\right| \psi\right\rangle \mid & \left.=\left|\langle\phi| \sum_{l=j+1}^{\infty} \alpha_{l}\right| \phi_{l}\right\rangle \mid \tag{6}\\
& \leq\|\phi\| \sum_{l=j+1}^{\infty}\left|\alpha_{l}\right|^{2} \tag{7}
\end{align*}
$$

Since $\lim _{j \rightarrow \infty} \sum_{l=j+1}^{\infty}\left|\alpha_{l}\right|^{2}=0$, it implies that $\left\{\Pi_{j}\right\}_{j}$ converges to I in weak operator topology.
On the other hand, for a fixed $j,\left\|I-\Pi_{j}\right\|=1$, by picking some unit vector in the space spanned by $I-\Pi_{j}$. Therefore,

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|I-\Pi_{j}\right\|=1 \tag{8}
\end{equation*}
$$

which implies that $\left\{\Pi_{j}\right\}_{j}$ does not converge to I in norm topology.
Definition 5 (Equivalence of two bounded operators). For operators $A, B \in \mathcal{L}(\mathcal{H})$, if $A=B$, then it should be understood in the weak sense, i.e., $\langle\phi \mid A \psi\rangle=\langle\phi \mid B \psi\rangle, \forall \phi, \psi \in \mathcal{H}$.

3 Duality of bounded operators and trace class operators

Definition 6 (Linear functional). A linear mapping f from a complex vector space V to \mathbb{C} is called a linear functional.

Definition 7 (Dual space of a vector space). Let V denote a normed vector space and let V^{*} denote the set of all continuous linear functionals. Then V^{*} is called the dual space of V.

A norm on V^{*} is defined as

$$
\begin{equation*}
\|f\|=\sup _{\|v\|=1}|f(v)| . \tag{9}
\end{equation*}
$$

Theorem 8 (Riesz representation theorem). Let $f \in \mathcal{H}^{*}$. Then there exists a unique vector $\phi \in \mathcal{H}$ such that $f(\psi)=\langle\phi \mid \psi\rangle$. Moreover, $\|f\|=\|\phi\|$.

We now extend the discussion on the dual space of trace-class operators. Let $S \in \mathcal{L}(\mathcal{H})$ and let $T \in \mathcal{T}(\mathcal{H})$. Then a linear functional f_{S} on $\mathcal{T}(\mathcal{H})$ can be defined as

$$
\begin{equation*}
f_{S}(T)=\operatorname{Tr}\{S T\} \tag{10}
\end{equation*}
$$

Theorem 9. The mapping $S \rightarrow f_{S}$ is a linear bijection from $\mathcal{L}(\mathcal{H})$ to $\mathcal{T}(\mathcal{H})^{*}$, and $\|S\|=\left\|f_{S}\right\|, \forall S \in$ $\mathcal{L}(\mathcal{H})$.

Moreover, we can conclude the following:

1. $S \geq 0 \Leftrightarrow f_{S}(T) \geq 0, \forall T \geq 0$.
2. $S=S^{\dagger} \Leftrightarrow f_{S}(T) \in \mathbb{R}, \forall T=T^{\dagger}$.

4 Quantum Mechanics

4.1 Quantum states

A set $\mathcal{S}(\mathcal{H})$ of quantum states is defined as

$$
\begin{equation*}
\mathcal{S}(\mathcal{H})=\{\rho \in \mathcal{T}(\mathcal{H}): \rho \geq 0, \operatorname{Tr}\{\rho\}=1\} \tag{11}
\end{equation*}
$$

Theorem 10. A quantum state $\rho \in \mathcal{S}(\mathcal{H})$ has a canonical convex decomposition of the form

$$
\begin{equation*}
\rho=\sum_{j} \lambda_{j} P_{j} \tag{12}
\end{equation*}
$$

where $\left\{\lambda_{j}\right\}_{j}$ is a finite or an infinite sequence of positive numbers, such that $\sum_{j} \lambda_{j}=1$, and $\left\{P_{j}\right\}_{j}$ is a set of orthogonal projections.

4.2 Effect

Effect is a mapping from the set of states $\mathcal{S}(\mathcal{H})$ to the interval $[0,1]$, i.e., $\rho \rightarrow E(\rho) \in[0,1] . E(\rho)$ is the probability of a "yes" answer to "the recorded measurement outcome belongs to a subset $X \subset \Omega$."

Basic assumption behind an effect is the following:

$$
\begin{equation*}
E\left(\lambda \rho_{1}+(1-\lambda) \rho_{2}\right)=\lambda E\left(\rho_{1}\right)+(1-\lambda) E\left(\rho_{2}\right), \forall \rho_{1}, \rho_{2} \in \mathcal{S}(\mathcal{H}), \lambda \in[0,1] \tag{13}
\end{equation*}
$$

Proposition 11. Let E be an effect. Then there exists $\hat{E} \in \mathcal{L}_{S}(\mathcal{H})$ such that $E(\rho)=\operatorname{Tr}[\hat{E} \rho], \forall \rho \in$ $\mathcal{S}(\mathcal{H})$, where $0 \leq \hat{E} \leq I$.

4.3 Partial trace

Definition 12 (Partial trace). $\operatorname{Tr}_{A}: \mathcal{T}\left(\mathcal{H}_{A} \otimes \mathcal{H}_{B}\right) \rightarrow \mathcal{T}\left(\mathcal{H}_{B}\right)$ is a linear mapping satisfying

$$
\begin{equation*}
\operatorname{Tr}\left\{\operatorname{Tr}_{A}\left\{T_{A B}\right\} E_{B}\right\}=\operatorname{Tr}\left\{T_{A B}\left(I_{A} \otimes E_{B}\right)\right\} \tag{14}
\end{equation*}
$$

$\forall T_{A B} \in \mathcal{T}\left(\mathcal{H}_{A} \otimes \mathcal{H}_{B}\right)$ and $E_{B} \in \mathcal{L}\left(\mathcal{H}_{B}\right)$.

The partial trace can be calculated as follows. Let $\left\{\psi_{j}\right\}_{j}$ and $\left\{\phi_{k}\right\}_{k}$ denote orthonormal bases for \mathcal{H}_{A} and \mathcal{H}_{B}, respectively. Then

$$
\begin{equation*}
\operatorname{Tr}_{A}\{T\}=\sum_{j, k, n}\left[\left\langle\left.\psi_{j}\right|_{A} \otimes\left\langle\left.\phi_{k}\right|_{B} T_{A B} \mid \psi_{j}\right\rangle_{A} \otimes \mid \phi_{n}\right\rangle_{B}\right]\left|\phi_{k}\right\rangle\left\langle\left.\phi_{n}\right|_{B}\right. \tag{15}
\end{equation*}
$$

4.4 State Purification

Let $\rho_{A} \in \mathcal{S}(\mathcal{H})$ denote a quantum state. Then a purification of ρ_{A} is a vector $|\psi\rangle_{R A} \in \mathcal{H}_{R} \otimes \mathcal{H}_{A}$ such that $\operatorname{Tr}_{R}\left\{|\psi\rangle\left\langle\left.\psi\right|_{R A}\right\}=\rho_{A}\right.$.
A purification of ρ_{A} can be constructed from the spectral decomposition of ρ_{A}.

$$
\begin{equation*}
\rho=\sum_{j} \lambda_{j}\left|\psi_{j}\right\rangle\left\langle\left.\psi_{j}\right|_{A},\right. \tag{16}
\end{equation*}
$$

where $\left\{\left|\psi_{j}\right\rangle\right\}_{j}$ is an orthonormal basis, as

$$
\begin{equation*}
|\psi\rangle_{R A}=\sum_{j} \sqrt{\lambda_{j}}\left|\psi_{j}\right\rangle_{R}\left|\psi_{j}\right\rangle_{A} . \tag{17}
\end{equation*}
$$

4.5 Quantum channels

Definition 13 (Positivity of a linear map). A linear mapping $\mathcal{N}_{A \rightarrow B}: \mathcal{T}\left(\mathcal{H}_{A}\right) \rightarrow \mathcal{T}\left(\mathcal{H}_{B}\right)$ is positive if $\mathcal{N}(T) \geq 0, \forall T \geq 0, T \in \mathcal{T}(\mathcal{H})$.

Definition 14 (Complete positivity of a linear map). A linear map $\mathcal{N}_{A \rightarrow B}: \mathcal{T}\left(\mathcal{H}_{A}\right) \rightarrow \mathcal{T}\left(\mathcal{H}_{B}\right)$ is completely positive if $\mathrm{id}_{R} \otimes \mathcal{N}_{A \rightarrow B}$ is positive for all finite-dimensional \mathcal{H}_{R}.

Definition 15 (Quantum channel). A linear map $\mathcal{N}_{A \rightarrow B}: \mathcal{T}\left(\mathcal{H}_{A}\right) \rightarrow \mathcal{T}\left(\mathcal{H}_{B}\right)$ is a quantum channel if it is completely positive and trace preserving.

Definition 16 (Adjoint of a linear map). Let $\mathcal{N}_{A \rightarrow B}: \mathcal{T}\left(\mathcal{H}_{A}\right) \rightarrow \mathcal{T}\left(\mathcal{H}_{B}\right)$ be a linear map. The adjoint $\mathcal{N}^{\dagger}: \mathcal{L}\left(\mathcal{H}_{B}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{A}\right)$ of a linear map \mathcal{N} is a unique linear map satisfying the following set of equations:

$$
\begin{equation*}
\operatorname{Tr}\{\mathcal{N}(T) E\}=\operatorname{Tr}\left\{T \mathcal{N}^{\dagger}(E)\right\} \tag{18}
\end{equation*}
$$

$\forall T \in \mathcal{T}(\mathcal{H})$ and $E \in \mathcal{L}(\mathcal{H})$.

4.5.1 Stinespring dilation

Definition 17. Let $\mathcal{H}_{A}, \mathcal{H}_{B}$ and \mathcal{H}_{E} be Hilbert spaces, and let $\mathcal{N}: \mathcal{T}\left(\mathcal{H}_{A}\right) \rightarrow \mathcal{T}\left(\mathcal{H}_{B}\right)$ be a quantum chanenel. An isometric extension or Stinespring dilation $V \in \mathcal{L}\left(\mathcal{H}_{A}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{B} \otimes \mathcal{H}_{E}\right)$ of the channel \mathcal{N} is a linear isometry such that

$$
\begin{equation*}
\mathcal{N}\left(X_{A}\right)=\operatorname{Tr}_{E}\left[V X_{A} V^{\dagger}\right] \tag{19}
\end{equation*}
$$

for all $X_{A} \in \mathcal{T}\left(\mathcal{H}_{A}\right)$.

4.5.2 Operator-sum form

Proposition 18. A map $\mathcal{N}: \mathcal{T}\left(\mathcal{H}_{A}\right) \rightarrow \mathcal{T}\left(\mathcal{H}_{B}\right)$ is a quantum channel if and only if there exists a sequence of bounded operators $\left\{A_{k}\right\}_{k}$ such that

$$
\begin{equation*}
\mathcal{N}(T)=\sum_{k} A_{k} T A_{k}^{\dagger}, \tag{20}
\end{equation*}
$$

$\sum_{k} A_{k}^{\dagger} A_{k}=I, \forall T \in \mathcal{T}\left(\mathcal{H}_{A}\right)$.

References

[Att] Stephane Attal. Lectures in quantum noise theory. http://math.univ-lyon1.fr/~attal/ chapters.html.
[HZ11] Teiko Heinosaari and Mario Ziman. The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement. Cambridge University Press, 2011. https: //www.cambridge.org/core/books/mathematical-language-of-quantum-theory/ D8AAEF727B99D7AB098F9162C6D55FC8

