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1 Overview

Separable Hilbert spaces form the backbone upon which the quantum theory in this course stems.
Indeed the first postulate of quantum mechanics is the existence of such an arena where physical
states reside, evolve, etc. Therefore sufficient knowledge of a Hilbert space’s structure, defining
properties, etc. is well worth earnest study. Hence this first lecture focuses on properly defining
and discussing properties about separable Hilbert spaces. In succinct terms:

Definition 1. A Hilbert space H is a complete inner product space.

In this lecture, we first define what makes H an inner product (IP) space and what makes it
complete. We then establish a definition of separability for an IP space. From there, we combine all
these notions to unambiguously define a separable Hilbert space and discuss some of its properties.

2 Hilbert Spaces

Suppose H is a complex vector space.1 Given |ψ〉 , |ϕ〉 , |φ〉 ∈ H and c ∈ C, if there exists a map
〈·|·〉 : H×H → C (i.e. an inner product) that satisfies the following, then H is an inner product
space:

1. 〈ψ|cϕ+ φ〉 = c 〈ψ|ϕ〉+ 〈ψ|φ〉 (linearity)

2. 〈ψ|ϕ〉 = 〈ϕ|ψ〉 (conjugate)

3. 〈ψ|ψ〉 ≥ 0, and 〈ψ|ψ〉 = 0 iff |ψ〉 = |0〉 = with |0〉 being the ‘null vector’ (positivity)

Note that if 〈ψ|ϕ〉 = 0 but |ϕ〉 , |ψ〉 6= |0〉 then ϕ,ψ are said to be orthogonal. Using this notion
of orthogonality, one can show the following: given an inner product space H, if for any positive
integer d there exists an orthogonal set of d vectors in H, then dimH = ∞. The proof is by
induction. That is, given a set of d orthogonal vectors of H, one can find another set of d + 1
orthogonal vectors of H (by assumption of “any positive integer...”), but this can be iterated
infinitely many times, which proves the statement. In colloquial language “There’s always room
at the Hilbert hotel.”2 There are many more interesting and useful properties of inner product
(IP) spaces. For example, given two IP spaces H and H′, if there exists a bijective (one-one and

1We assume knowledge of what defines a vector space.
2See Hilbert Hotel on Wikipedia.
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onto) linear map U : H → H′ such that 〈ψ′|ϕ′〉 = 〈ψ|ϕ〉, where |ψ′〉 = U |ψ〉, then H and H′ are
isomorphic and U is an isomorphism of the IP spaces. This bears physical significance in the
quantum theory regarding, e.g., the invariance of transition amplitudes, the Born rule, etc., under
isomorphisms.

With discussion of generic properties of IP spaces aside, we can focus on a particular example of
an IP space which is useful for our purposes. Let N be the set of natural numbers {0, 1, 2, . . .}, and
let `2(N) be a set of functions f : N→ C such that:

∞∑
j=0

|fj |2 <∞ (1)

with fj = f(j). The formula for the inner product of l2(N) is then

〈g|f〉 =

∞∑
j=0

gjfj (2)

which satisfies all the properties (i)–(iii) above. Hence `2(N) is an IP space. A consequence of these
properties is that if f, g ∈ `2(N) [i.e. f, g independently satisfy relation (1)] then 〈g|f〉 <∞. This
follows by applying the Cauchy-Scwharz inequality:

|〈ϕ|ψ〉|2 ≤ ‖ϕ‖2‖ψ‖2 (3)

valid for any IP space, to elements of `2(N).

Continuing with this example, define the Kronecker functions {δk}∞k=0 on `2(N) as

δkj =

{
1 if j = k

0 else
(4)

with δkj = δk(j) such that 〈δk|δj〉 = δkj .
3 The Kronecker functions constitute an infinite set (one

for each natural number) of orthogonal vectors of `2(N). Therefore, `2(N) is an infinite dimensional
IP space.

An IP space comes from the more general normed space with norm ‖ψ‖. Particular to our
interests, the norm can be defined through the inner product such that ‖ψ‖ =

√
〈ψ|ψ〉 and satisfies

the following properties. Given ψ,ϕ ∈ H and c ∈ C:

1. ‖ψ‖ ≥ 0 and ‖ψ‖ = 0 iff ψ = 0

2. ‖c · ψ‖ = |c| · ‖ψ‖

3. ‖ψ + ϕ‖ ≤ ‖ψ‖+ ‖ϕ‖ (triangle inequality)

One may check the validity of these properties for an inner product space by using the definition of
the norm, the properties of List 3, and the Cauchy-Schwarz inequality (3). These properties also
imply fundamental geometric relations such as:

3Usually the ket representation of Kronecker functions δn goes as |n〉 (e.g., the Fock states of the quantum harmonic
oscillator). Both notations will be used in these notes.
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1. Pythagorean theorem: ‖ψ + ϕ‖2 = ‖ψ‖2 + ‖ϕ‖2 (for ψ,ϕ orthogonal)

2. Parallelogram law: ‖ψ + ϕ‖2 + ‖ψ − ϕ‖2 = 2 · ‖ψ‖2 + 2 · ‖ϕ‖2

The norm induces a metric (in the topological sense) on H, making H a metric space,4 such that
the following distance measure may be defined for elements ψ,ϕ ∈ H:

d(ψ,ϕ) = ‖ψ − ϕ‖ (5)

One can then use the distance to show that the inner product |〈ψ|ϕ〉| is continuous. Indeed, define
ε = ‖ϕ2 − ϕ1‖ > 0 and use the Cauchy-Schwarz inequality to show:

|〈ψ|ϕ2 − ϕ1〉| ≤ ‖ψ‖ · ε (6)

In other words, ‘small’ changes in ϕ lead to small changes in the inner product.

With prerequisite knowledge of metric spaces, IP spaces, etc., laid forth, we now discuss the notion
of completeness. A metric space H is called complete if every Cauchy sequence is convergent and
the limit of the sequence is within the space. Recall that a sequence {ϕj}j is Cauchy if ∀ ε > 0 ∃ Nε

such that d(ϕj , ϕk) ≤ ε whenever j, k ≥ Nε. To understand the completeness criterion a bit, let us
consider a counterexample.

Example 1. Consider the sequence ϕn = 1
n in the interval (0, 1]. One can prove that this sequence

is Cauchy by choosing Nε >
2
ε and forming the following set of inequalities:

|ϕn − ϕm| ≤
1

n
+

1

m
≤ 2

Nε
< ε (7)

where we have used the criterion m,n ≥ Nε. However, the sequence is not complete because
limn→∞ ϕn = 0 /∈ (0, 1]. However, if we close the interval [0, 1], it becomes complete.

A consequence of completeness is the existence of basis expansions, where the basis is some set of
orthonormal vectors of H. Recall, a set of orthonormal vectors is a set of orthogonal vectors
X ⊂ H such that the norm of each vector φ ∈ X is unity. The set is said to be maximal if there
does not exist an orthonormal set which contains X as a proper subset. If an othornormal set
X is maximal, then it constitutes an orthonormal basis of H. We note an important property,
without direct proof, that every Hilbert space H has an orthonormal basis X and all orthornomal
bases {Xi} of H have the same cardinality |Xi| = dimH. A consequence of maximality is that: if
X is an orthonormal basis of H and there exists ψ ∈ H such that 〈ψ|φ〉 ∀ φ ∈ X , then ψ = 0.

Separability of a space follows from here. A space H is separable if it has a countable orthonormal
basis. Here, countable is defined in the usual topological sense, e.g. a set H has a countable
orthonormal basis X if each element of X can be associated uniquely to an element of N. As
example, consider the Hilbert (i.e. complete IP) space `2(N). It has a basis given by the Kronecker
functions {δj} ∀ j ∈ N. The set of Kronecker functions is obviously maximal as each δj is associated
with a natural number j ∈ N, but this also implies the orthonormal basis is countable. Hence `2(N)
is a separable Hilbert space. Indeed it is the separable Hilbert space.

Proposition 1. Any separable Hilbert space H is isomorphic to `2(N).

4There is a hierarchy of generality, metric space→ normed space→ vector space, from more general to less general.
Hence properties applying to metric spaces apply to normed spaces etc.
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Proof. Fix the an orthonormal basis {ϕk}∞k=0 for some separable Hilbert space H. For each ψ ∈ H,
define f : N→ C via fj = 〈ϕj |ψ〉, then f ∈ `2(N) and the map ψ → f is an isomorphism between
H and `2(N).
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