PHYS 7895 Spring 2019
 Gaussian Quantum Information Homework 2

Due Friday, 1 March 2019, by 4pm in Nicholson 447

1. The displacement operator acting on an n-mode state is defined as

$$
\begin{equation*}
\hat{D}_{r} \equiv \exp \left(i r^{T} \Omega \hat{r}\right) \tag{1}
\end{equation*}
$$

where $r \in \mathbb{R}^{2 n}$ and \hat{r} is the $2 n$-dimensional vector of quadrature operators.
(a) Prove that \hat{D}_{r} is a bounded operator.
(b) Calculate its operator norm.
(c) What is a unit vector that achieves the operator norm?
(d) Is \hat{D}_{r} trace class?
2. Prove that the spectrum of the position-quadrature operator $\hat{x} \equiv\left(\hat{a}+\hat{a}^{\dagger}\right) / \sqrt{2}$ is equal to the real line. (Recall that the spectrum of an operator M is defined to be the set of all $\lambda \in \mathbb{C}$ such that $M-\lambda I$ is not invertible.)
3. Prove that $\operatorname{det}(\sigma) \geq 1$ and $\sigma>0$ implies that $\sigma+i \Omega \geq 0$ (uncertainty principle) when σ is the covariance matrix of a single-mode bosonic state.
4. Prove that a 4×4 matrix σ is the covariance matrix of a two-mode bosonic state if and only if $\operatorname{det}(\sigma)-\Delta+1 \geq 0, \Delta^{2} \geq 4 \operatorname{det}(\sigma)$, and $\sigma>0$, where Δ is the sum of the squares of the symplectic eigenvalues of σ.
5. Recall that a faithful Gaussian state is defined as

$$
\begin{equation*}
\frac{\exp \left(-\hat{r}^{T} H \hat{r}\right)}{\operatorname{Tr}\left[\exp \left(-\hat{r}^{T} H \hat{r}\right)\right]} \tag{2}
\end{equation*}
$$

for H a $2 n \times 2 n$ real, positive definite matrix H, called the Hamiltonian matrix.
(a) The single-mode squeezing operator $\hat{S}(z)$ is defined for $z \in \mathbb{C}$ as

$$
\begin{equation*}
\hat{S}(z) \equiv \exp \left(\frac{1}{2}\left[z^{*} \hat{a}^{2}-z \hat{a}^{\dagger 2}\right]\right) \tag{3}
\end{equation*}
$$

The thermal state $\theta(\bar{n})$ of mean photon number $\bar{n} \geq 0$ is defined as

$$
\begin{equation*}
\theta(\bar{n}) \equiv \frac{1}{\bar{n}+1} \sum_{n=0}^{\infty}\left(\frac{\bar{n}}{\bar{n}+1}\right)^{n}|n\rangle\langle n| . \tag{4}
\end{equation*}
$$

Find the Hamiltonian matrix for the state $\hat{S}(z) \theta(\bar{n}) \hat{S}^{\dagger}(z)$ as a function of z and \bar{n} for $\bar{n}>0$.
(b) Find the covariance matrix of the state $\hat{S}(z) \theta(\bar{n}) \hat{S}^{\dagger}(z)$ as a function of z and \bar{n} for $\bar{n}>0$.
(c) The two-mode squeezing operator $S_{2}(z)$ is defined for $z \in \mathbb{C}$ as

$$
\begin{equation*}
\hat{S}_{2}(z) \equiv \exp \left(\frac{1}{2}\left[z^{*} \hat{a} \hat{b}-z \hat{a}^{\dagger} \hat{b}^{\dagger}\right]\right) \tag{5}
\end{equation*}
$$

Find the Hamiltonian matrix of the state $\hat{S}_{2}(z)\left(\theta\left(\bar{n}_{1}\right) \otimes \theta\left(\bar{n}_{2}\right)\right) \hat{S}_{2}^{\dagger}(z)$ as a function of z, \bar{n}_{1}, and \bar{n}_{2} for $\bar{n}_{1}, \bar{n}_{2}>0$.
(d) Find the covariance matrix of the state $\hat{S}_{2}(z)\left(\theta\left(\bar{n}_{1}\right) \otimes \theta\left(\bar{n}_{2}\right)\right) \hat{S}_{2}^{\dagger}(z)$ as a function of z, \bar{n}_{1}, and \bar{n}_{2} for $\bar{n}_{1}, \bar{n}_{2}>0$.
6. Similar to how displacement operators compose nicely ($\hat{D}_{r_{1}} \hat{D}_{r_{2}}=\hat{D}_{r_{1}+r_{2}} e^{-\frac{i}{2} r_{1}^{T} \Omega r_{2}}$), it turns out that exponentials of quadratic forms compose nicely as well.
Let H^{1} and H^{2} be complex symmetric matrices. That is, they have complex entries and satisfy $H=H^{T}$ for T the ordinary matrix transpose (not the conjugate transpose).
(a) Prove that

$$
\begin{equation*}
\left[-\frac{1}{2} \hat{r}^{T} H^{1} \hat{r},-\frac{1}{2} \hat{r}^{T} H^{2} \hat{r}\right]=-\frac{1}{2} \hat{r}^{T} H^{3} \hat{r}, \tag{6}
\end{equation*}
$$

for

$$
\begin{equation*}
H^{3}=-i\left(H^{1} \Omega H^{2}-H^{2} \Omega H^{1}\right) \tag{7}
\end{equation*}
$$

(b) Prove that

$$
\begin{equation*}
\left[-i \Omega H^{1},-i \Omega H^{2}\right]=-i \Omega H^{3} \tag{8}
\end{equation*}
$$

for H^{3} as given above.
(c) Explain how to use these commutation relations and the Baker-Campbell-Hausdorff formula (as given at BCH), to conclude that the complex symmetric matrix H^{4} satisfying

$$
\begin{equation*}
\exp \left(-i \Omega H^{1}\right) \exp \left(-i \Omega H^{2}\right)=\exp \left(-i \Omega H^{4}\right) \tag{9}
\end{equation*}
$$

also satisfies

$$
\begin{equation*}
\exp \left(-\frac{1}{2} \hat{r}^{T} H^{1} \hat{r}\right) \exp \left(-\frac{1}{2} \hat{r}^{T} H^{2} \hat{r}\right)=\exp \left(-\frac{1}{2} \hat{r}^{T} H^{4} \hat{r}\right) \tag{10}
\end{equation*}
$$

7. BONUS: Let H denote a symmetric $2 n \times 2 n \times 2 n$ rank-three tensor, which leads to the Hamiltonian operator

$$
\begin{equation*}
\hat{H}=\sum_{j, k, l} H_{j, k, l} \hat{r}_{j} \hat{r}_{k} \hat{r}_{l} . \tag{11}
\end{equation*}
$$

What is the transformation realized by \hat{H} on the $2 n$-dimensional vector \hat{r} of quadrature operators? That is, calculate

$$
\begin{equation*}
\exp (i \hat{H} t) \hat{r} \exp (-i \hat{H} t) \tag{12}
\end{equation*}
$$

What is the transformation realized by a Hamiltonian operator defined from a symmetric rank- k tensor?

