
PHYS 7895 Spring 2019
Gaussian Quantum Information

Homework 2

Due Friday, 1 March 2019, by 4pm in Nicholson 447

1. The displacement operator acting on an n-mode state is defined as

D̂r ≡ exp(irTΩr̂), (1)

where r ∈ R2n and r̂ is the 2n-dimensional vector of quadrature operators.

(a) Prove that D̂r is a bounded operator.

(b) Calculate its operator norm.

(c) What is a unit vector that achieves the operator norm?

(d) Is D̂r trace class?

2. Prove that the spectrum of the position-quadrature operator x̂ ≡
(
â+ â†

)
/
√

2 is equal
to the real line. (Recall that the spectrum of an operator M is defined to be the set of
all λ ∈ C such that M − λI is not invertible.)

3. Prove that det(σ) ≥ 1 and σ > 0 implies that σ+ iΩ ≥ 0 (uncertainty principle) when
σ is the covariance matrix of a single-mode bosonic state.

4. Prove that a 4 × 4 matrix σ is the covariance matrix of a two-mode bosonic state if
and only if det(σ)−∆ + 1 ≥ 0, ∆2 ≥ 4 det(σ), and σ > 0, where ∆ is the sum of the
squares of the symplectic eigenvalues of σ.

5. Recall that a faithful Gaussian state is defined as

exp(−r̂THr̂)
Tr[exp(−r̂THr̂)]

(2)

for H a 2n× 2n real, positive definite matrix H, called the Hamiltonian matrix.

(a) The single-mode squeezing operator Ŝ(z) is defined for z ∈ C as

Ŝ(z) ≡ exp

(
1

2

[
z∗â2 − zâ†2

])
. (3)

The thermal state θ(n̄) of mean photon number n̄ ≥ 0 is defined as

θ(n̄) ≡ 1

n̄+ 1

∞∑
n=0

(
n̄

n̄+ 1

)n

|n〉〈n|. (4)

Find the Hamiltonian matrix for the state Ŝ(z)θ(n̄)Ŝ†(z) as a function of z and
n̄ for n̄ > 0.
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(b) Find the covariance matrix of the state Ŝ(z)θ(n̄)Ŝ†(z) as a function of z and n̄
for n̄ > 0.

(c) The two-mode squeezing operator S2(z) is defined for z ∈ C as

Ŝ2(z) ≡ exp

(
1

2

[
z∗âb̂− zâ†b̂†

])
. (5)

Find the Hamiltonian matrix of the state Ŝ2(z)(θ(n̄1)⊗ θ(n̄2))Ŝ†2(z) as a function
of z, n̄1, and n̄2 for n̄1, n̄2 > 0.

(d) Find the covariance matrix of the state Ŝ2(z)(θ(n̄1)⊗ θ(n̄2))Ŝ†2(z) as a function of
z, n̄1, and n̄2 for n̄1, n̄2 > 0.

6. Similar to how displacement operators compose nicely (D̂r1D̂r2 = D̂r1+r2e
− i

2
rT1 Ωr2), it

turns out that exponentials of quadratic forms compose nicely as well.

Let H1 and H2 be complex symmetric matrices. That is, they have complex entries
and satisfy H = HT for T the ordinary matrix transpose (not the conjugate transpose).

(a) Prove that [
−1

2
r̂TH1r̂,−1

2
r̂TH2r̂

]
= −1

2
r̂TH3r̂, (6)

for
H3 = −i

(
H1ΩH2 −H2ΩH1

)
. (7)

(b) Prove that [
−iΩH1,−iΩH2

]
= −iΩH3, (8)

for H3 as given above.

(c) Explain how to use these commutation relations and the Baker–Campbell–Hausdorff
formula (as given at BCH), to conclude that the complex symmetric matrix H4

satisfying
exp(−iΩH1) exp(−iΩH2) = exp(−iΩH4) (9)

also satisfies

exp

(
−1

2
r̂TH1r̂

)
exp

(
−1

2
r̂TH2r̂

)
= exp

(
−1

2
r̂TH4r̂

)
. (10)

7. BONUS: Let H denote a symmetric 2n × 2n × 2n rank-three tensor, which leads to
the Hamiltonian operator

Ĥ =
∑
j,k,l

Hj,k,lr̂j r̂kr̂l. (11)

What is the transformation realized by Ĥ on the 2n-dimensional vector r̂ of quadrature
operators? That is, calculate

exp(iĤt)r̂ exp(−iĤt) (12)

What is the transformation realized by a Hamiltonian operator defined from a sym-
metric rank-k tensor?
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https://en.wikipedia.org/wiki/Baker�Campbell�Hausdorff_formula

