PHYS 7895 Gaussian Quantum Information Spring 2019

Instructor: Prof. Mark M. Wilde, Phone number: (225) 578-4323

Time and Location: Tuesday and Thursday 10:30am-11:50am, Room: Nicholson 262.

Office Hours: TBA

Required Textbook: Quantum Continuous Variables: A Primer of Theoretical Methods, Alessio Serafini

Recommended Textbooks: *Quantum Systems, Channels, Information: A Mathematical Introduction,* Alexander S. Holevo (especially Part V).

The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement, Teiko Heinosaari and Mario Ziman

Other Reference: Lecture Notes of Stephane Attal

Prerequisites: Previous exposure to Quantum Information Theory is helpful but not required.

Material: This course introduces the subject of Gaussian quantum information. Due to the experimental "ease" with which bosonic Gaussian states can be prepared and manipulated in the laboratory, and the theoretical elegance and striking simplicity of the bosonic Gaussian mathematical formalism, the topic of Gaussian quantum information seems to penetrate nearly every research area of interest in modern quantum information, including computing, communication, metrology, cryptography, etc. As such, it is thus essential to have a systematic introduction to and presentation of this fundamental topic, and the objective of this course is to provide such an introduction. In particular, we will cover far-ranging topics within Gaussian quantum information, as listed below.

Grading: There will be some assignments and a final presentation. The grading is pass/fail.

Presentation: The final presentation will be a useful way for the students to become more familiar with some of the research topics in the Gaussian quantum information literature.

Week 1	Week 8
Separable Hilbert Spaces	Minimum Output Entropy Theorem
Bosonic Hilbert Spaces	Entanglement of Gaussian States
Week 2	Week 9
Faithful Gaussian States	Entanglement Cost
Characteristic Functions	Capacities of Quantum Gaussian Channels
Week 3	Week 10
Gaussian Quantum Channels	Cramer–Rao Bounds
Semi-Groups of Gaussian Channels	CV Quantum Computing
Week 4	Week 11
Gaussian Measurements	Encoding Qubits in Oscillators
Homodyne Detection	CV Quantum Key Distribution
Week 5	Week 12
Heterodyne Detection	CV Experimental Realizations
General-dyne Detection	
Week 6	Week 13
Bosonic Teleportation	
Teleportation Simulation of Channels	
Week 7	
Fidelity of Gaussian States	
Entropies of Gaussian States and Channels	

Some of the lectures stated above as a single lecture will likely span more than one lecture.