Applications of Variational Quantum Algorithms

Mark M. Wilde School of Electrical and Computer Engineering, Cornell University

4th Annual International Quantum Information Science Workshop Innovare Advancement Center, Rome, New York

• We are in exciting times, with basic quantum computers available (~100 qubits), from IBM, IonQ, Rígettí, etc.

• Current era is called NISQ (noisy intermediate-scale)

Motivation

Programming Existing Quantum Computers Programming quantum computers is becoming commonplace, and some universities are offering freshman courses on this topic

What can we do with existing quantum computers?

Outline

 Background on variational quantum algorithms • Application to semidefinite programming arXiv:2108.08406 (w/ Patel, Coles) Background on quantum computational complexity theory • Other applications: • Estimating distinguishability measures arXiv:2108.08406 (w/ Rethinasamy, Agarwal, Sharma) • Symmetry testing arXiv:2105.12758, arXiv:2203.10017 (w/ LaBorde)

Collaborations with Students

Rochisha Agarwal Margarite LaBorde

Dhrumíl Patel Soorya Rethinasamy

Overview of Variational Quantum Algorithms

Variational Principle

- The variational principle in quantum mechanics:
 - the ground-state energy
- Variational principle has played an important role in physics calculations for many years

$\langle \psi(\theta) | H | \psi(\theta) \rangle \ge E_0 \equiv \min_{|\psi\rangle} \langle \psi | H | \psi \rangle$

where $|\psi(\theta)\rangle$ is a trial wavefunction, H is a Hamiltonian, & E_0 is

Variational Quantum Algorithms (VQAs)

 Proposed as a method for reducing quantum computing resources, while still doing something presumably difficult classically

• Use the quantum computer for essentially one task! Estímate $\langle \psi | O | \psi \rangle$, i.e., expectation value of observable O

ARTICLE

Received 9 Dec 2013 | Accepted 27 May 2014 | Published 23 Jul 2014

DOI: 10.1038/ncom

OPEN

A variational eigenvalue solver on a photonic quantum processor

Alberto Peruzzo^{1,*,†}, Jarrod McClean^{2,*}, Peter Shadbolt¹, Man-Hong Yung^{2,3}, Xiao-Qi Zhou¹, Peter J. Love⁴, Alán Aspuru-Guzik² & Jeremy L. O'Brien¹

VQAs: How do they work?

 Consider example of Variational Quantum Eigensolver • Goal: find the ground-state energy E_0 of an *n*-qubit Hamiltonian H • Typical assumption: H decomposes as a sum of $p(n) \equiv poly(n)$ efficiently measurable observables

where $c_i \in \mathbb{R}$ and O_i is an efficiently measurable observable

 $H = \sum_{i=1}^{p(n)} c_i O_i$

Quantum Part of VQAs

Use quantum computer for this one thing:

• Execute parameterized circuit to prepare trial state $|\psi(\theta)\rangle$ and then estimate $\langle \psi(\theta) | O_i | \psi(\theta) \rangle$ for all *i*, through sampling / repetition

• Let \widetilde{O}_i denote the estimate of $\langle \psi(\theta) | O_i | \psi(\theta) \rangle$

VQAs: Depiction of Quantum Part

11

Abbreviated Depiction

Prepare $|\psi(\theta)\rangle$

 $|0\rangle \rightarrow U(\theta)$

Measure

First Classical Part of VQAs

• Calculate
$$\sum_{i=1}^{p(n)} c_i \widetilde{O}_i$$
 as guess for g

• To estimate $\langle \psi(\theta) | H | \psi(\theta) \rangle$ with ε -error and success probability $1 - \delta$, $O\left(\frac{C^2}{\varepsilon^2} \log \frac{1}{\delta}\right)$ circuit executions are required, where $C \equiv \sum_{i=1}^{p(n)} |c_i| \| O_i \|$ (consequence of Hoeffding bound)

ground-state energy

Second Classical Part of VQAs

values of parameter θ (gradient descent or related method) • Goal is to minimize cost function $\langle \psi(\theta) | H | \psi(\theta) \rangle$ Variational principle guarantees that

and the hope is to saturate the inequality

- With $\langle \psi(\theta) | H | \psi(\theta) \rangle$ estimated, use a classical optimizer to compute next

 - $\min_{\theta} \langle \psi(\theta) | H | \psi(\theta) \rangle \ge E_0$

VQAs: Hybrid Quantum-Classical Optimization

Outsource parameter optimization to a classical optimizer
Use the quantum computer only to estimate expectations of observables

New set of θ values

Classical optimizer

Estimate $E(\theta) = \langle \psi(\theta) | H | \psi(\theta) \rangle$

Evaluating Gradients: Parameter Shift Rule

• Applies to parameterized circuits of the form where H_m is Hermitian w/2 eigenvalues & W_m is unparameterized unitary Gradient can be evaluated analytically as

- Use the parameter shift rule to evaluate gradients on quantum computers
 - $U(\theta) = \prod \exp(-i\theta_m H_m) W_m$

 $\nabla_{\theta_m} \langle H \rangle_{\theta} = \frac{1}{2} \left(\langle H \rangle_{\theta + \frac{\pi}{2} \hat{e}_m} - \langle H \rangle_{\theta - \frac{\pi}{2} \hat{e}_m} \right)$

Quantum Circuits for Evaluating Gradients

Prepare $|\psi(\theta + \hat{e}_m \pi/2)\rangle$

$$|0\rangle \rightarrow U(\theta + \hat{e}_m \pi/2)$$

Prepare $|\psi(\theta - \hat{e}_m \pi/2)\rangle$

$$|0\rangle \rightarrow U(\theta - \hat{e}_m \pi/2)$$

17

Issues with VQAs

- and gradient
- Barren plateau problem can happen that magnitude of gradient
- mitigate the effects of noise

• Runtíme - depends on círcuít depth of ansatz, number of iterations needed to find global optimum, and shots needed to estimate cost

exponentially vanishes with system size, requiring exponential precision to escape a barren plateau (where cost landscape is flat) Noíse - Try to use shallow depth parameterízed quantum círcuíts to

VQAs for Semidefinite Programming

Review of Semidefinite Programming

• A semidefinite program (SDP) is an optimization problem, having applications in operations research, combinatorial optimization, etc. • Standard form: $\sup\{\operatorname{Tr}[CX] : \operatorname{Tr}[A_iX] = b_i \quad \forall i \in [M]\}$ X>0• Defining $\Phi(X) \equiv (\operatorname{Tr}[A_1X], ..., \operatorname{Tr}[A_MX])$ and $b \equiv (b_1, ..., b_M)$, can abbreviate as $\sup\{\operatorname{Tr}[CX] : \Phi(X) = b\}$

 $X \ge 0$

Lagrangian of an SDP

• For c > 0 and $y \in \mathbb{R}^{M}$, define the augmented Lagrangian:

state and $\lambda \ge 0$ is a scalar:

 $\mathscr{L}(\lambda\rho, y) \equiv \lambda \operatorname{Tr}[C\rho] + y^T(b)$

• Can cast optimization as $p^* \equiv$

 $\mathscr{L}(X, y) \equiv \operatorname{Tr}[CX] + y^{T}(b - \Phi(X)) - \frac{c}{2} \| b - \Phi(X) \|_{2}^{2}$ • Since $X \ge 0$, can substitute with $X = \lambda \rho$, where ρ is a quantum

$$b - \lambda \Phi(\rho) - \frac{c}{2} \| b - \lambda \Phi(\rho) \|_{2}^{2}$$

$$= \sup_{\rho \in \text{States}, \lambda \ge 0} \inf_{y \in \mathbb{R}^{M}} \mathscr{L}(\lambda \rho, y)$$

Rewriting an SDP as a VQA

 With the last rewrite, we can replace the optimization over all states with an optimization over a parameterized family

 $p^* \geq \sup_{\theta \in [0,2\pi]^r, \lambda \geq 0} \inf_{y \in \mathbb{R}^M} \mathscr{L}(\lambda \rho(\theta), y)$

 The optimization problem involves estimating Tr[Cρ(θ)], Tr[A₁ρ(θ)], ..., Tr[A_Mρ(θ)], as well as their gradients, each of which we evaluate using the quantum computer
 Following the VQA principle, everything else is classical processing

Schematic of VQA for SDPs

Example of Performance

Executed performance of the algorithm for randomly generated feasible SDPs with size of the matrices ≫ number of constraints

Quantum Computational Complexity Theory

Quantum Computational Complexity Theory

For understanding & classifying difficulty of computational problems

 Most important complexity classes for quantum computation are BQP, QMA, QIP(2), QIP(3)

• These classes generalize P, NP, IP(2), IP(3), respectively

26

BQP stands for "bounded error quantum polynomíal tíme"

BQP in a Nutshell

• Problems that are efficiently decidable by a quantum computer

• Funding agencies have spent \$\$\$ based on the P \subsetneq BQP belief

27

• QMA stands for "quantum Merlin Arthur" Problems believed to be hard for a quantum computer to decide

• Model is that $|\psi\rangle$ is a state that is difficult to prepare on a quantum computer • Assumption: quantum prover with unbounded computational resources prepares $|\psi\rangle$

QMA in a Nutshell

Canonical QMA-Complete Problem

A problem is called QMA-complete if it is in QMA and if it is as computationally difficult to solve as every problem in QMA
Canonical QMA-complete problem is k-local Hamiltonian: Given a Hamiltonian H = ∑_{i=1}ⁿ H_i, where each H_i acts on no more than k qubits, decide if its ground-state energy is ≥ a or ≤ b

• To show that it is in QMA, quantum prover prepares ground state, sends it to verifier, who then picks H_i at random, and performs a measurement related to it and accepts based on the outcome of the measurement

Acceptance probability is related to the ground-state energy

k-Local Hamiltonian

Variational Q. Eigensolver and k-Local Hamiltonian

• There is a direct link between VQE and k-Local Hamiltonian! VQE is trying to solve a QMA-complete problem possible to do so in the worst case

- By our beliefs in quantum complexity theory, it should not be
- However, 3 evidence that VQE works well in practice, much like there are heuristics for trying to solve NP-complete problems

QMA

VOA

32

QMA and VQAs

 Basic idea is to replace the prover with a parameterized circuit and set the reward function (for maximization) equal to the acceptance probability in the original QMA problem

Quantum Interactive Proofs (QIP)

- We can view QMA as a communication protocol in which the prover sends a quantum message to the verifier
- BQP involves no messages sent from the prover to the verifier
- Taking this concept further, allow for prover and verifier to exchange more messages (called "quantum interactive proof")
- Idea is that interaction can allow for solving more difficult problems, like interacting with an omniscient teacher

QIP(2) - Two Messages Exchanged

D

Prover

Verifier

QIP(2)-Complete Problem

• Given a quantum channel N and a state ρ , estimate

 $\sigma \in States$

where the fidelity is defined as

max $F(\rho, \mathcal{N}(\sigma))$

 $F(\omega,\tau) \equiv \left\| \sqrt{\omega} \sqrt{\tau} \right\|_{1}^{2}$

QIP(3) - Three Messages Exchanged

37

QIP(3)-Complete Problem

• Given quantum channels N and M, estimate

 $\rho,\sigma \in States$

max $F(\mathcal{N}(\rho), \mathcal{M}(\sigma))$

Quantum Interactive Proofs and VQAs

• Can do the same for QIP(3)

Other Applications of VQAs

• Estimating distinguishability measures arXiv:2108.08406 (w/ Rethinasamy, Agarwal, Sharma) • Symmetry testing arXiv:2105.12758, arXiv:2203.10017 (w/ LaBorde)

VQAs for Estimating Distinguishability Measures

State Distinguishability Measures Trace distance:

for states ρ and σ , where || A• Fidelity:

 $F(\rho, \sigma) \equiv$

These measures give a sense of how close or far two states are
Used all throughout quantum information science

 $\|\rho - \sigma\|_1$

$$A \parallel_{1} \equiv \operatorname{Tr}\left[\sqrt{A^{\dagger}A}\right]$$

$$= \left\| \sqrt{\rho} \sqrt{\sigma} \right\|_{1}^{2}$$

Distinguishability Measures as Optimizations

• Can write both of these measures as optimizations: • $\frac{1}{2} \| \rho - \sigma \|_1 = \max_{\Lambda: 0 \le \Lambda \le I} \operatorname{Tr}[\Lambda(\rho - \sigma)]$ • $F(\rho, \sigma) = \max_{U} |\langle \psi^{\rho} | U \otimes I | \psi^{\sigma} \rangle|^{2}$, where ψ^{ρ} and ψ^{σ} purify ρ and σ This suggests using VQAs to evaluate them for unknown states

44

VQA for estimating trace distance

- Rather than optimize over states, optimize over measurement operators

 Naímark extension theorem states that for every measurement operator Λ , \exists a unitary U acting on a larger Hilbert space such that

 $\operatorname{Tr}[\Lambda\rho] = \operatorname{Tr}\left[(I \otimes |0\rangle\langle 0|)U(\rho \otimes |0\rangle\langle 0|)U^{\dagger}\right]$

Use this idea to formulate a VQA for estimating trace distance

VQA for estimating trace distance

• First circuit estimates $Tr[\Lambda \rho]$ and second estimates $Tr[\Lambda \sigma]$

• Reward function is $Tr[\Lambda(\rho - \sigma)]$

 Can use in a VQA to estimate trace distance

46

Performance of trace distance estimation

3-qubit states generated randomly using hardware efficient ansatz

VQAs for Estimating State Fidelity • We proposed many VQAs for estimating state fidelity • Let us discuss the approach that gives the best performance • $F(\psi, \phi) = |\langle \psi | \phi \rangle|^2$ for pure states ψ and ϕ • Consider that $|\langle \psi | \phi \rangle|^2 = \text{Tr}[\text{SWAP}(|\psi\rangle \langle \psi | \otimes |\phi\rangle \langle \phi |)]$ and SWAP = $|\Phi^+\rangle\langle\Phi^+|+|\Phi^-\rangle\langle\Phi^-|+|\Psi^+\rangle\langle\Psi^+|-|\Psi^-\rangle\langle\Psi^-|$ Can then estimate pure-state fidelity by repeatedly performing Bell measurements on $|\psi\rangle\langle\psi|\otimes|\phi\rangle\langle\phi|$

VQA for Estimating State Fidelity

 Can use the optimization formula for fidelity along with SWAP observation to propose VQA for estimating fidelity:

Performance of state fidelity estimation

Algorithm 6 is the one we discussed
All estimated using noiseless simulator
3-qubit states generated randomly using hardware efficient ansatz

Channel Distinguishability Measures

- distance, and multiple state discrimination:
 - ρ_{RA}

 $p_{\text{succ}}((p(x), \rho_x)_x)$

Can also build VQAs for thes

· Concepts can be generalized to channel fidelity, diamond

 $F(\mathcal{N}, \mathcal{M}) \equiv \min F((\mathrm{id}_R \otimes \mathcal{N})(\rho_{RA}), (\mathrm{id}_R \otimes \mathcal{M})(\rho_{RA}))$

 $\left\| \mathcal{N} - \mathcal{M} \right\|_{\diamond} \equiv \max \left\| (\mathrm{id}_{R} \otimes \mathcal{N})(\rho_{RA}) - (\mathrm{id}_{R} \otimes \mathcal{M})(\rho_{RA}) \right\|_{1}$

$$\equiv \max_{(\Lambda_x)_x} \sum_x p(x) \operatorname{Tr}[\Lambda_x \rho_x]$$

se tasks

Performance of channel fidelity estimation

• Unitary dilations of two-qubit channels generated randomly using hardware efficient ansatz

 Noise resilience - training still occurs in the presence of noise

52

Performance of diamond distance estimation

Unitary dilations of one-qubit channels generated randomly using hardware efficient ansatz

Algorithms 15 Naisalaas	
Algorithm 15 Noiseless Algorithm 15 Noisy	
Final noisy parameters of True Normalized Diamo	
10 ²	10 ³
Iterations	

Performance of multiple state discrimination

54

Three one-qubit mixed states generated randomly using hardware efficient ansatz

VQAs for Symmetry Testing

Notions of Symmetry

• Let $\{U(g)\}_{g \in G}$ denote a unitary representation of a group G• Let $\Pi_G \equiv \frac{1}{|G|} \sum_{g \in G} U(g)$ denote the group projection

• A state ρ is G-Bose symmetric if $\rho = \Pi_G \rho \Pi_G$

• A state ρ is G-symmetric if $[U(g), \rho] = 0$ for all $g \in G$

• A Hamiltonian H is G-symmetric if [U(g), H] = 0 for all $g \in G$

56

Efficient Algorithm for G-Bose Symmetry Testing

• Assumption: \exists efficient circuit implementing U(g) for all $g \in G$

Efficient Algorithm for G-Bose Symmetry Testing

I/d _____

• Acceptance probability = $1 - \frac{t^2}{2d|G|} \sum_{g \in G} \left\| [U(g), H] \right\|_2^2 + O(t^4)$

• Algorithm accepts with certainty if and only if H is G-symmetric

Example: Transverse-Field Ising Model

 σ_i^X

 Transverse-field Ising model w/ periodic boundary condition:

$$H_{\text{TFIM}} \equiv \sigma_N^Z \otimes \sigma_1^Z + \sum_{i=1}^{N-1} \sigma_i^Z \otimes \sigma_{i+1}^Z + \sum_{i=1}^{N} \sigma_i^Z \otimes \sigma_i^Z + \sum_{i=1}^{N} \sigma_i^Z \otimes \sigma_i^$$

• Symmetries: $[H_{\text{TFIM}}, (\sigma^X)^{\otimes N}] = 0$ and $[H_{\text{TFIM}}, W^{\pi}] = 0 \quad \forall \pi \in S_N$

60

G-Symmetry Testing of States

symmetric, i.e., satisfying

to check for G-Bose symmetry of the resulting state

- Suppose \exists a quantum circuit that prepares a purification ψ^{ρ} of ρ
- Theorem: If ρ is G-symmetric, $\exists \psi_G^{\rho}$ a purification that is G-Bose

- $|\psi_G^{\rho}\rangle = \overline{U}(g) \otimes U(g) |\psi_G^{\rho}\rangle \quad \forall g \in G$
- Thus, if ρ is G-symmetric, \exists unitary P such that $|\psi_G^{\rho}\rangle = P \otimes I |\psi^{\rho}\rangle$ Idea: Send the purifying system to the prover, and then do a test

set of G-symmetric states

62

Example: Testing Invariance under Collective Rotations • Rotationally invariant state ρ satisfies $[\rho, R_Z(\phi) \otimes R_Z(\phi)] = 0 \quad \forall \phi \in [0, 2\pi]$ Plot shows result of test on two-qubit state randomly generated using hardware efficient ansatz

63

VQA for Hamiltonian Symmetry Testing

 By modifying the previous Hamiltonian symmetry testing algorithm to optimize over input states, we get a VQA for this task:

64

Acceptance probability

$\left\|\frac{1}{|C|}\sum U(g)e^{-iHt}U(g)^{\dagger}\right\|^{2} \ge 1 - \frac{2t}{|C|}\sum \left\|\left[U(g), H\right]\right\| - O(t^{2})$ $g \in G$

Example of Separability Testing

• A bipartite state ρ_{AB} is k-extendible if 1) $\exists \omega_{AB_1\cdots B_k}$ such that $\operatorname{Tr}_{B_2 \cdots B_k}[\omega] = \rho \text{ and } 2) \left[\omega_{AB_1 \cdots B_k}, I_A \otimes W_{B_1 \cdots B_k}^{\pi} \right] = 0 \quad \forall \pi \in S_k$ Symmetry group in this case is the symmetric group

 We can use state symmetry testing for entanglement detection • Every separable (unentangled) state is k-extendible for all k

Example of Separability Testing

Testing for 2-extendibility

 Two-qubit state generated randomly using hardware efficient ansatz

All Python code freely available

- SDPs https://github.com/Dhrumil2910/Variational-Quantum-Algorithms-for-Semidefinite-Programming
- Symmetry testing https://github.com/mlabo15/Hamiltonian-Symmetry
- Estimating distinguishability measures <u>https://arxiv.org/src/2108.08406v2/anc</u>

67

Summary

- VQAs constitute an optimization method for the NISQ era (but can also be used in the fault-tolerant era)
- Main idea is to use quantum computer for the simple task of estimating expectations of observables
- Leave all other calculations to classical computers
- We discussed applications to semidefinite programming, estimating distinguishability measures, and symmetry testing

Outlook

 How will these algorithms scale as the NISQ era proceeds? • Is there a way to give a guaranteed runtime? • Can we prove that these algorithms will give a quantum advantage? • Can we prove that certain problem instances can be solved in BQP? • What other problems can we solve using the VQA paradigm? How do different q. computing platforms compare when running these algorithms?

69

