Applications of Variational Quantum Algorithms
 Mark M. Wilde

School of Electrical and Computer Engineering, Cornell University

4th Annual International Quantum Information Science Workshop Innovare Advancement Center, Rome, New York

Motivation

- We are in exciting times, with basic quantum computers available (~ 100 qubits), from IBM, IonQ, Rigettí, etc.
- Current era is called NISQ (noisy intermediate-scale)

Programmíng Existing Quantum Computers

- Programmíng quantum computers is becoming commonplace, and some universities are offering freshman courses on this topic

-What can we do with existing quantum computers?

Outline

- Background on variational quantum algorithms
- Application to semidefinite programmíng arxiv:2108.08406 (w/ Patel, Coles)
- Background on quantum computational complexíty theory
- Other applications:
- Estimatíng distinguishability measures arxiv:2108.08406 (w/ Rethinasamy, Agarwal, Sharma)
- Symmetry testíng arxi::2105.12788, arxiv:2203.10017 (w/ LaBorde)

Collaborations with Students

Rochisha Agarwal Margarite LaBorde

Dhrumil Patel

Soorya Rethinasamy

Overview of Variational Quantum Algorithms

Variational Príncíple

- The variational principle in quantum mechanics:

$$
\langle\psi(\theta)| H|\psi(\theta)\rangle \geq E_{0} \equiv \min _{|\psi\rangle}\langle\psi| H|\psi\rangle
$$

where $|\psi(\theta)\rangle$ is a trial wavefunction, H is a Hamiltonian, \& E_{0} is the ground-state energy

- Variational príncíple has played an important role in physics calculations for many years

Variational Quantum Algorithms (VQAs)

- Proposed as a method for reducing quantum computing resources, while still doing something presumably difficult classically

- Use the quantum computer for essentially one task! Estimate $\langle\psi| O|\psi\rangle$, i.e., expectation value of observable O

VQAs: How do they work?

- Consider example of Varíational Quantum Eigensolver
- Goal: find the ground-state energy E_{0} of an n-qubit Hamiltonian H
- Typical assumption: H decomposes as a sum of $p(n) \equiv \operatorname{poly}(n)$ efficiently measurable observables

$$
H=\sum_{i=1}^{p(n)} c_{i} O_{i}
$$

where $c_{i} \in \mathbb{R}$ and O_{i} is an efficiently measurable observable

Quantum Part of VQAs

- Use quantum computer for this one thing:
- Execute parameterized circuít to prepare trial state $|\psi(\theta)\rangle$ and then estimate $\langle\psi(\theta)| O_{i}|\psi(\theta)\rangle$ for all i, through sampling / repetition
- Let \widetilde{O}_{i} denote the estimate of $\langle\psi(\theta)| O_{i}|\psi(\theta)\rangle$

VQAs: Depiction of Quantum Part

Abbreviated Depiction

Prepare $|\psi(\theta)\rangle$
Measure

First Classical Part of VQAs

- Calculate $\sum_{i=1}^{p(n)} c_{i} \widetilde{O}_{i}$ as guess for ground-state energy
- To estimate $\langle\psi(\theta)| H|\psi(\theta)\rangle$ with ε-error and success probability $1-\delta$, $O\left(\frac{C^{2}}{\varepsilon^{2}} \log \frac{1}{\delta}\right)$ circuit executions are required, where $C \equiv \sum_{i=1}^{p(n)}\left|c_{i}\right|\left\|O_{i}\right\|$ (consequence of Hoeffding bound)

Second Classical Part of VQAs

- With $\langle\psi(\theta)| H|\psi(\theta)\rangle$ estimated, use a classical optimizer to compute next values of parameter θ (gradient descent or related method)
- Goal is to minimize cost function $\langle\psi(\theta)| H|\psi(\theta)\rangle$
- Variational princíple guarantees that

$$
\min _{\theta}\langle\psi(\theta)| H|\psi(\theta)\rangle \geq E_{0}
$$

and the hope is to saturate the inequality

VQAs: Hybrid Quantum-Classical Optimization

- Outsource parameter optimization to a classical optimizer
- Use the quantum computer only to estimate expectations of observables

Evaluating Gradients: Parameter Shift Rule

- Use the parameter shift rule to evaluate gradients on quantum computers
- Applies to parameterized círcuits of the form

$$
U(\theta)=\prod_{m} \exp \left(-i \theta_{m} H_{m}\right) W_{m}
$$

where H_{m} is Hermitian w/ 2 eigenvalues $\& W_{m}$ is unparameterized unitary

- Gradient can be evaluated analytically as

$$
\nabla_{\theta_{m}}\langle H\rangle_{\theta}=\frac{1}{2}\left(\langle H\rangle_{\theta+\frac{\pi}{2} \hat{e}_{m}}-\langle H\rangle_{\theta-\frac{\pi}{2} \hat{e}_{m}}\right)
$$

Quantum Círcuits for Evaluating Gradients

Issues with VQAs

- Runtime - depends on circuit depth of ansatz, number of iterations needed to find global optimum, and shots needed to estimate cost and gradient
- Barren plateau problem - can happen that magnitude of gradient exponentially vanishes with system size, requiring exponential precision to escape a barren plateau (where cost landscape is flat)
- Noise - Try to use shallow depth parameterized quantum circuits to mitigate the effects of noise

VQAs for Semidefinite Programmíng

Review of Semidefinite Programming

- A semidefinite program (SDP) is an optimization problem, having applications in operations research, combinatorial optimization, etc.
- Standard form: $\sup \left\{\operatorname{Tr}[C X]: \operatorname{Tr}\left[A_{i} X\right]=b_{i} \quad \forall i \in[M]\right\}$ $x \geq 0$
- Defining $\Phi(X) \equiv\left(\operatorname{Tr}\left[A_{1} X\right], \ldots, \operatorname{Tr}\left[A_{M} X\right]\right)$ and $b \equiv\left(b_{1}, \ldots, b_{M}\right)$, can abbreviate as $\sup \{\operatorname{Tr}[C X]: \Phi(X)=b\}$ $x \geq 0$

Lagrangian of an SDP

- For $c>0$ and $y \in \mathbb{R}^{M}$, define the augmented Lagrangian:

$$
\mathscr{L}(X, y) \equiv \operatorname{Tr}[C X]+y^{T}(b-\Phi(X))-\frac{c}{2}\|b-\Phi(X)\|_{2}^{2}
$$

- Since $X \geq 0$, can substitute with $X=\lambda \rho$, where ρ is a quantum state and $\lambda \geq 0$ is a scalar:

$$
\mathscr{L}(\lambda \rho, y) \equiv \lambda \operatorname{Tr}[C \rho]+y^{T}(b-\lambda \Phi(\rho))-\frac{c}{2}\|b-\lambda \Phi(\rho)\|_{2}^{2}
$$

- Can cast optimízation as $p^{*} \equiv \sup _{\rho \in \text { States }, \lambda \geq 0} \inf _{y \in \mathbb{R}^{M}} \mathscr{L}(\lambda \rho, y)$

Rewriting an SDP as a VQA

- With the last rewrite, we can replace the optimization over all states with an optimization over a parameterized family

$$
p^{*} \geq \sup _{\theta \in[0,2 \pi]^{j}, \lambda \geq 0} \inf _{y \in \mathbb{R}^{M}} \mathscr{L}(\lambda \rho(\theta), y)
$$

- The optimization problem involves estimating $\operatorname{Tr}[C \rho(\theta)], \operatorname{Tr}\left[A_{1} \rho(\theta)\right], \ldots, \operatorname{Tr}\left[A_{M} \rho(\theta)\right]$, as well as their gradients, each of which we evaluate using the quantum computer
- Following the VQA principle, everything else is classical processing

Schematic of VQA for SDPs

Example of Performance

- Executed performance of the algorithm for randomly generated feasible SDPs with size of the matrices \gg number of constraints

Quantum Computational Complexity Theory

Quantum Computational Complexity Theory

- For understanding \& classifying difficulty of computational problems
- Most important complexíty classes for quantum computation are $B Q P, Q M A, \operatorname{QIP}(2), \operatorname{QIP}(3)$
- These classes generalize P, NP, IP (2), IP(3), respectively

BQP in a Nutshell

- BQP stands for "bounded error quantum polynomíal tíme"
- Problems that are efficiently decidable by a quantum computer

- Funding agencies have spent $\$ \$ \$$ based on the $P \subsetneq B Q P$ belief

QMA in a Nutshell

- QMA stands for "quantum Merlín Arthur"
- Problems believed to be hard for a quantum computer to decide

- Model is that $|\psi\rangle$ is a state that is difficult to prepare on a quantum computer
- Assumption: quantum prover with unbounded computational resources prepares $|\psi\rangle$

Canonical QMA-Complete Problem

- A problem is called QMA-complete if it is in QMA and if it is as computationally difficult to solve as every problem in QMA
- Canonical QMA-complete problem is k-local Hamiltonían:

Given a Hamiltonian $H=\sum_{i=1}^{n} H_{i}$, where each H_{i} acts on no more than k qubits, decide if its ground-state energy is $\geq a$ or $\leq b$

k-Local Hamiltonian

- To show that it is in QMA, quantum prover prepares ground state, sends it to verifier, who then picks H_{i} at random, and performs a measurement related to it and accepts based on the outcome of the measurement
- Acceptance probability is related to the ground-state energy

Variational Q. Eigensolver and k-Local Hamiltonían

- There is a direct link between VQE and k-Local Hamiltonían!
- VQE is trying to solve a QMA-complete problem
- By our beliefs in quantum complexity theory, it should not be possible to do so in the worst case
- However, ヨ evidence that VQE works well in practice, much like there are heuristics for trying to solve NP-complete problems

QMA and VQAs

QMA

VQA

QMA and VQAs

- Basic idea is to replace the prover with a parameterized circuit and set the reward function (for maximization) equal to the acceptance probability in the original QMA problem

Quantum Interactive Proofs (QIP)

- We can view QMA as a communication protocol in which the prover sends a quantum message to the verifier
- BQP involves no messages sent from the prover to the verifier
- Taking this concept further, allow for prover and verifier to exchange more messages (called "quantum interactive proof")
- Idea is that interaction can allow for solving more difficult problems, like interacting with an omniscient teacher

QIP (2) - Two Messages Exchanged

Verifier

QIP (2)-Complete Problem

- Given a quantum channel \mathcal{N} and a state ρ, estimate

$$
\max _{\sigma \in \text { States }} F(\rho, \mathcal{N}(\sigma))
$$

where the fidelity is defined as

$$
F(\omega, \tau) \equiv\|\sqrt{\omega} \sqrt{\tau}\|_{1}^{2}
$$

QIP (3) - Three Messages Exchanged

QIP (3)-Complete Problem

- Given quantum channels \mathcal{N} and \mathscr{M}, estimate

$$
\max _{\rho, \sigma \in \text { States }} F(\mathscr{N}(\rho), \mathscr{M}(\sigma))
$$

Quantum Interactive Proofs and VQAs

- Follow same reasoning as before \& replace actions of prover with parameterized circuits, \& set acceptance probability as reward function

Verifier
$\operatorname{QIP}(2)$

Quantum Interactive Proofs and VQAs

- Can do the same for $\operatorname{QIP}(3)$

Other Applications of VQAs

- Estimating distinguishability measures arxiv:2108.08+06 (w/Rethinasamy, Agarwal, Sharma)
- Symmetry testíng arxiv:2105.12758, arxi:2203.10017 (w/ LaBorde)

VQAs for Estimating Distinguishability Measures

State Distinguishability Measures

- Trace distance:

$$
\|\rho-\sigma\|_{1}
$$

for states ρ and σ, where $\|A\|_{1} \equiv \operatorname{Tr}\left[\sqrt{A^{\dagger} A}\right]$

- Fidelíty:

$$
F(\rho, \sigma) \equiv\|\sqrt{\rho} \sqrt{\sigma}\|_{1}^{2}
$$

- These measures give a sense of how close or far two states are
- Used all throughout quantum information science

Distinguishability Measures as Optimizations

- Can write both of these measures as optimizations:
- $\frac{1}{2}\|\rho-\sigma\|_{1}=\max _{\Lambda: 0 \leq \Lambda \leq I} \operatorname{Tr}[\Lambda(\rho-\sigma)]$
- $\left.F(\rho, \sigma)=\max _{U}\left|\left\langle\psi^{\rho}\right| U \otimes I\right| \psi^{\sigma}\right\rangle\left.\right|^{2}$, where ψ^{ρ} and ψ^{σ} purify ρ and σ
- This suggests using VQAs to evaluate them for unknown states

VQA for estimating trace distance

- Naimark extension theorem states that for every measurement operator Λ, \exists a unitary U acting on a larger Hilbert space such that

$$
\operatorname{Tr}[\Lambda \rho]=\operatorname{Tr}\left[(I \otimes|0\rangle\langle 0|) U(\rho \otimes|0\rangle\langle 0|) U^{\dagger}\right]
$$

- Use this idea to formulate a VQA for estimating trace distance
- Rather than optimize over states, optimize over measurement operators

VQA for estimating trace distance

- First circuít estimates $\operatorname{Tr}[\Lambda \rho]$ and second estimates $\operatorname{Tr}[\Lambda \sigma]$
- Reward function is $\operatorname{Tr}[\Lambda(\rho-\sigma)]$
- Can use in a VQA to estimate trace distance

Performance of trace distance estimation

3-qubit states generated randomly using hardware efficient ansatz

VQAs for Estimating State Fidelity

- We proposed many VQAs for estimating state fidelity
- Let us discuss the approach that gives the best performance
- $F(\psi, \phi)=|\langle\psi \mid \phi\rangle|^{2}$ for pure states ψ and ϕ
- Consider that $|\langle\psi \mid \phi\rangle|^{2}=\operatorname{Tr}[\operatorname{SWAP}(|\psi\rangle\langle\psi| \otimes|\phi\rangle\langle\phi|)]$ and SWAP $=\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right|+\left|\Phi^{-}\right\rangle\left\langle\Phi^{-}\right|+\left|\Psi^{+}\right\rangle\left\langle\Psi^{+}\right|-\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|$
- Can then estimate pure-state fidelity by repeatedly performing Bell measurements on $|\psi\rangle\langle\psi| \otimes|\phi\rangle\langle\phi|$

VQA for Estimating State Fidelity

- Can use the optimization formula for fidelity along with SWAP observation to propose VQA for estimating fidelity:

Performance of state fidelity estimation

- Algorithm 6 is the one we discussed
- All estimated using noíseless símulator
- 3-qubit states generated randomly usíng hardware efficient ansatz

Channel Distinguishability Measures

- Concepts can be generalized to channel fidelity, diamond distance, and multiple state discrimination:

$$
\begin{gathered}
F(\mathcal{N}, \mathscr{M}) \equiv \min _{\rho_{R A}} F\left(\left(\mathrm{id}_{R} \otimes \mathscr{N}\right)\left(\rho_{R A}\right),\left(\mathrm{id}_{R} \otimes \mathscr{M}\right)\left(\rho_{R A}\right)\right) \\
\|\mathscr{N}-\mathscr{M}\|_{\diamond} \equiv \max _{\rho_{R A}}\left\|\left(\operatorname{id}_{R} \otimes \mathscr{N}\right)\left(\rho_{R A}\right)-\left(\operatorname{id}_{R} \otimes \mathscr{M}\right)\left(\rho_{R A}\right)\right\|_{1} \\
p_{\text {succ }}\left(\left(p(x), \rho_{x}\right)_{x}\right) \equiv \max _{\left(\Lambda_{x}\right)_{x}} \sum_{x} p(x) \operatorname{Tr}\left[\Lambda_{x} \rho_{x}\right]
\end{gathered}
$$

- Can also build VQAs for these tasks

Performance of channel fidelity estimation

- Unitary dilations of two-qubit channels generated randomly using hardware efficient ansatz
- Noise resilience - training still occurs in the presence of noise

Performance of diamond distance estimation

Unitary dilations of one-qubit channels generated randomly using hardware efficient ansatz

Performance of multiple state discrimination

Three one-qubit mixed states generated randomly using hardware efficient ansatz

VQAs for Symmetry Testing

Notions of Symmetry

- Let $\{U(g)\}_{g \in G}$ denote a unitary representation of a group G
- Let $\Pi_{G} \equiv \frac{1}{|G|} \sum_{g \in G} U(g)$ denote the group projection
- A state ρ is G-Bose symmetric if $\rho=\Pi_{G} \rho \Pi_{G}$
- A state ρ is G-symmetric if $[U(g), \rho]=0$ for all $g \in G$
- A Hamiltonian H is G-symmetric if $[U(g), H]=0$ for all $g \in G$

Efficient Algorithm for G-Bose Symmetry Testing

- Assumption: \exists efficient circuit implementing $U(g)$ for all $g \in G$

Efficient Algorithm for G-Bose Symmetry Testing

- Accept if measurement gives all zeros outcome
- Algorithm's acceptance probability $=\operatorname{Tr}\left[\Pi_{G} \rho\right]$
- $\operatorname{Tr}\left[\Pi_{G} \rho\right]=1$ if and only if ρ is G-Bose symmetric

Efficient Algorithm for Hamiltonian Symmetry Testing

- Acceptance probability $=1-\frac{t^{2}}{2 d|G|} \sum_{g \in G}\|[U(g), H]\|_{2}^{2}+O\left(t^{4}\right)$
- Algorithm accepts with certainty if and only if H is G-symmetric

Example: Transverse-Field Ising Model

- Transverse-field Ising model w/ periodic boundary condítion:

$$
H_{\mathrm{TFIM}} \equiv \sigma_{N}^{Z} \otimes \sigma_{1}^{Z}+\sum_{i=1}^{N-1} \sigma_{i}^{Z} \otimes \sigma_{i+1}^{Z}+\sum_{i=1}^{N} \sigma_{i}^{X}
$$

- Symmetries: $\left[H_{\text {TFIM }},\left(\sigma^{X}\right)^{\otimes N}\right]=0$ and $\left[H_{\text {TFIM }}, W^{\pi}\right]=0 \quad \forall \pi \in S_{N}$

G-Symmetry Testing of States

- Suppose \exists a quantum circuit that prepares a purification ψ^{ρ} of ρ
- Theorem: If ρ is G-symmetric, $\exists \psi_{G}^{\rho}$ a purification that is G-Bose symmetric, i.e., satisfying

$$
\left|\psi_{G}^{\rho}\right\rangle=\bar{U}(g) \otimes U(g)\left|\psi_{G}^{\rho}\right\rangle \quad \forall g \in G
$$

- Thus, if ρ is G-symmetric, \exists unitary P such that $\left|\psi_{G}^{\rho}\right\rangle=P \otimes I\left|\psi^{\rho}\right\rangle$
- Idea: Send the purifying system to the prover, and then do a test to check for G-Bose symmetry of the resulting state

VQA for State G-Symmetry Testing

- Acceptance probability $=\max _{\sigma \in \operatorname{Sym}} F(\rho, \sigma)$, where Sym denotes the set of G-symmetric states

Example: Testing Invariance under Collective Rotations

- Rotationally invariant state ρ satisfies $\left[\rho, R_{Z}(\phi) \otimes R_{Z}(\phi)\right]=0 \quad \forall \phi \in[0,2 \pi]$
- Plot shows result of test on two-qubit state randomly generated using hardware efficient ansatz

VQA for Hamiltonian Symmetry Testing

- By modifying the previous Hamiltonian symmetry testing algorithm to optimize over input states, we get a VQA for this task:

- Acceptance probability

$$
=\left\|\frac{1}{|G|} \sum_{g \in G} U(g) e^{-i H t} U(g)^{\dagger}\right\|_{\infty}^{2} \geq 1-\frac{2 t}{|G|} \sum_{g \in G}\|[U(g), H]\|_{\infty}-O\left(t^{2}\right)
$$

Example of Separability Testing

- We can use state symmetry testing for entanglement detection
- A bipartite state $\rho_{A B}$ is k-extendible if 1) $\exists \omega_{A B_{1} \cdots B_{k}}$ such that $\operatorname{Tr}_{B_{2} \cdots B_{k}}[\omega]=\rho$ and 2) $\left[\omega_{A B_{1} \cdots B_{k}}, I_{A} \otimes W_{B_{1} \cdots B_{k}}^{\pi}\right]=0 \quad \forall \pi \in S_{k}$
- Symmetry group in this case is the symmetric group
- Every separable (unentangled) state is k-extendible for all k

Example of Separability Testing

- Testing for 2-extendibility
- Two-qubit state generated randomly using hardware efficient ansatz

All Python code freely available

- SDPs - https://github.com/Dhrumil2910/Variational-Quantum-Algorithms-for-Semidefinite-Programming
- Symmetry testing - https://github.com/mlabol5/Hamiltonian-Symmetry
- Estimating distinguishability measures - https://arxiv.org/src/2108.08406v2/anc

Summary

- VQAs constitute an optimization method for the NISQ era (but can also be used in the fault-tolerant era)
- Main idea is to use quantum computer for the simple task of estimating expectations of observables
- Leave all other calculations to classical computers
- We discussed applications to semidefinite programming, estimating distinguishability measures, and symmetry testing

Outlook

- How will these algorithms scale as the NISQ era proceeds?
- Is there a way to give a guaranteed runtime?
- Can we prove that these algorithms will give a quantum advantage?
- Can we prove that certaín problem instances can be solved in $B Q P$?
-What other problems can we solve using the VQA paradigm?
- How do different q. computing platforms compare when running these algorithms?

