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Motivation

We are in exciting times, with 
basic quantum computers 
available (  100 qubits), from 
IBM, IonQ, Rigetti, etc. 

Current era is called NISQ 
(noisy intermediate-scale)

∼
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Programming Existing Quantum Computers
Programming quantum computers is becoming commonplace, and 
some universities are offering freshman courses on this topic 
 
 
 
 

What can we do with existing quantum computers?
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Outline
Background on variational quantum algorithms 

Application to semidefinite programming arXiv:2108.08406 (w/ Patel, Coles) 

Background on quantum computational complexity theory 

Other applications: 

Estimating distinguishability measures arXiv:2108.08406 (w/ Rethinasamy, Agarwal, Sharma) 

Symmetry testing arXiv:2105.12758, arXiv:2203.10017 (w/ LaBorde)
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Collaborations with Students
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Overview of Variational Quantum Algorithms
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Variational Principle

The variational principle in quantum mechanics: 
 
 
where  is a trial wavefunction,  is a Hamiltonian, &  is 
the ground-state energy  

Variational principle has played an important role in physics 
calculations for many years

|ψ(θ)⟩ H E0
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⟨ψ(θ) |H |ψ(θ)⟩ ≥ E0 ≡ min
|ψ⟩

⟨ψ |H |ψ⟩



Variational Quantum Algorithms (VQAs)

Proposed as a method for 
reducing quantum computing 
resources, while still doing 
something presumably difficult 
classically
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Use the quantum computer for essentially one task! 
Estimate , i.e., expectation value of observable ⟨ψ |O |ψ⟩ O



VQAs: How do they work?

Consider example of Variational Quantum Eigensolver 

Goal: find the ground-state energy  of an -qubit Hamiltonian  

Typical assumption:  decomposes as a sum of  
efficiently measurable observables  
 
 
where  and  is an efficiently measurable observable

E0 n H

H p(n) ≡ poly(n)

ci ∈ ℝ Oi
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H = ∑p(n)
i=1 ciOi



Quantum Part of VQAs 

Use quantum computer for this one thing: 

Execute parameterized circuit to prepare trial state  and 
then estimate  for all , through sampling / repetition 

Let  denote the estimate of 

|ψ(θ)⟩
⟨ψ(θ) |Oi |ψ(θ)⟩ i

Õ i ⟨ψ(θ) |Oi |ψ(θ)⟩
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VQAs: Depiction of Quantum Part
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Abbreviated Depiction
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First Classical Part of VQAs 

Calculate  as guess for ground-state energy 

To estimate  with -error and success probability , 

 circuit executions are required, where 

(consequence of Hoeffding bound)

p(n)

∑
i=1

ci Õ i

⟨ψ(θ) |H |ψ(θ)⟩ ε 1 − δ

O( C2

ε2
log

1
δ ) C ≡

p(n)

∑
i=1

|ci | Oi
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Second Classical Part of VQAs 
With  estimated, use a classical optimizer to compute next 
values of parameter  (gradient descent or related method) 

Goal is to minimize cost function   

Variational principle guarantees that 
 
 
and the hope is to saturate the inequality

⟨ψ(θ) |H |ψ(θ)⟩
θ

⟨ψ(θ) |H |ψ(θ)⟩
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min
θ

⟨ψ(θ) |H |ψ(θ)⟩ ≥ E0



VQAs: Hybrid Quantum-Classical Optimization
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Outsource parameter optimization to a classical optimizer 

Use the quantum computer only to estimate expectations of observables



Evaluating Gradients: Parameter Shift Rule

Use the parameter shift rule to evaluate gradients on quantum computers 

Applies to parameterized circuits of the form 
 
 
where  is Hermitian w/ 2 eigenvalues &  is unparameterized unitary 

Gradient can be evaluated analytically as 

Hm Wm
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U(θ) = ∏
m

exp(−iθmHm)Wm

∇θm
⟨H⟩θ =

1
2 (⟨H⟩θ+ π

2 ̂em
− ⟨H⟩θ− π

2 ̂em)



Quantum Circuits for Evaluating Gradients
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Issues with VQAs
Runtime - depends on circuit depth of ansatz, number of iterations 
needed to find global optimum, and shots needed to estimate cost 
and gradient 

Barren plateau problem - can happen that magnitude of gradient 
exponentially vanishes with system size, requiring exponential 
precision to escape a barren plateau (where cost landscape is flat) 

Noise - Try to use shallow depth parameterized quantum circuits to 
mitigate the effects of noise
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VQAs for Semidefinite Programming
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Review of Semidefinite Programming

A semidefinite program (SDP) is an optimization problem, having 
applications in operations research, combinatorial optimization, etc. 

Standard form:    

Defining  and , can 
abbreviate as  

sup
X≥0

{Tr[CX] : Tr[AiX] = bi ∀i ∈ [M]}

Φ(X) ≡ (Tr[A1X], …, Tr[AMX]) b ≡ (b1, …, bM)
sup
X≥0

{Tr[CX] : Φ(X) = b}

20



Lagrangian of an SDP

For  and , define the augmented Lagrangian: 

Since , can substitute with , where  is a quantum 
state and  is a scalar: 

Can cast optimization as 

c > 0 y ∈ ℝM

X ≥ 0 X = λρ ρ
λ ≥ 0

p* ≡ sup
ρ∈States,λ≥0

inf
y∈ℝM

ℒ(λρ, y)
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ℒ(λρ, y) ≡ λ Tr[Cρ] + yT(b − λΦ(ρ)) −
c
2

b − λΦ(ρ)
2

2

ℒ(X, y) ≡ Tr[CX] + yT(b − Φ(X)) −
c
2

b − Φ(X)
2

2



Rewriting an SDP as a VQA
With the last rewrite, we can replace the optimization over all states 
with an optimization over a parameterized family  
 

The optimization problem involves estimating 
, as well as their gradients,  

each of which we evaluate using the quantum computer 

Following the VQA principle, everything else is classical processing

Tr[Cρ(θ)], Tr[A1ρ(θ)], …, Tr[AMρ(θ)]
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p* ≥ sup
θ∈[0,2π]r,λ≥0

inf
y∈ℝM

ℒ(λρ(θ), y)



Schematic of VQA for SDPs
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Example of Performance 

Executed performance of the algorithm for randomly generated 
feasible SDPs with size of the matrices  number of constraints≫
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Quantum Computational Complexity Theory
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Quantum Computational Complexity Theory

For understanding & classifying difficulty of computational problems 

Most important complexity classes for quantum computation are 
BQP, QMA, QIP(2), QIP(3) 

These classes generalize P, NP, IP(2), IP(3), respectively
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BQP in a Nutshell
BQP stands for “bounded error quantum polynomial time” 

Problems that are efficiently decidable by a quantum computer  
 
 
 

Funding agencies have spent $$$ based on the P  BQP belief⊊
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QMA in a Nutshell
QMA stands for “quantum Merlin Arthur” 

Problems believed to be hard for a quantum computer to decide 
 
 
 
 

Model is that  is a state that is difficult to prepare on a quantum computer 

Assumption: quantum prover with unbounded computational resources prepares  

|ψ⟩

|ψ⟩
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Canonical QMA-Complete Problem

A problem is called QMA-complete if it is in QMA and if it is as 
computationally difficult to solve as every problem in QMA 

Canonical QMA-complete problem is -local Hamiltonian:  

Given a Hamiltonian , where each  acts on no more 

than  qubits, decide if its ground-state energy is  or 

k

H =
n

∑
i=1

Hi Hi

k ≥ a ≤ b
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-Local Hamiltoniank

To show that it is in QMA, quantum prover prepares ground 
state, sends it to verifier, who then picks  at random, and 
performs a measurement related to it and accepts based on the 
outcome of the measurement 

Acceptance probability is related to the ground-state energy

Hi
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Variational Q. Eigensolver and -Local Hamiltonian k

There is a direct link between VQE and -Local Hamiltonian! 

VQE is trying to solve a QMA-complete problem 

By our beliefs in quantum complexity theory, it should not be 
possible to do so in the worst case 

However,  evidence that VQE works well in practice, much like 
there are heuristics for trying to solve NP-complete problems

k

∃
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QMA and VQAs
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QMA

VQA



QMA and VQAs

Basic idea is to replace the prover with a parameterized circuit 
and set the reward function (for maximization) equal to the 
acceptance probability in the original QMA problem
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Quantum Interactive Proofs (QIP)
We can view QMA as a communication protocol in which the 
prover sends a quantum message to the verifier 

BQP involves no messages sent from the prover to the verifier 

Taking this concept further, allow for prover and verifier to 
exchange more messages (called “quantum interactive proof”) 

Idea is that interaction can allow for solving more difficult 
problems, like interacting with an omniscient teacher 
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QIP(2) - Two Messages Exchanged
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QIP(2)-Complete Problem

Given a quantum channel  and a state , estimate 
 
 
where the fidelity is defined as

𝒩 ρ
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max
σ∈States

F(ρ, 𝒩(σ))

F(ω, τ) ≡ ω τ
2

1



QIP(3) - Three Messages Exchanged
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QIP(3)-Complete Problem

Given quantum channels  and , estimate𝒩 ℳ

38

max
ρ,σ∈States

F(𝒩(ρ), ℳ(σ))



Quantum Interactive Proofs and VQAs

Follow same reasoning as before & replace actions of prover with 
parameterized circuits, & set acceptance probability as reward function
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QIP(2) VQA



Quantum Interactive Proofs and VQAs

Can do the same for QIP(3)
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QIP(3) VQA



Other Applications of VQAs

Estimating distinguishability measures arXiv:2108.08406 (w/ Rethinasamy, Agarwal, Sharma) 

Symmetry testing arXiv:2105.12758, arXiv:2203.10017 (w/ LaBorde)
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VQAs for Estimating 
Distinguishability Measures
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State Distinguishability Measures
Trace distance: 
 
 

 for states  and , where  

Fidelity: 

These measures give a sense of how close or far two states are 

Used all throughout quantum information science

ρ σ A 1 ≡ Tr[ A†A]
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ρ − σ
1

F(ρ, σ) ≡ ρ σ
2

1



Distinguishability Measures as Optimizations

Can write both of these measures as optimizations: 

 

, where  and  purify  and  

This suggests using VQAs to evaluate them for unknown states

1
2

ρ − σ
1

= max
Λ:0≤Λ≤I

Tr[Λ(ρ − σ)]

F(ρ, σ) = max
U

⟨ψρ |U ⊗ I |ψσ⟩
2

ψρ ψσ ρ σ
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VQA for estimating trace distance
Naimark extension theorem states that for every measurement 
operator ,  a unitary  acting on a larger Hilbert space such that 
 

Use this idea to formulate a VQA for estimating trace distance 

Rather than optimize over states, optimize over measurement 
operators

Λ ∃ U
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Tr[Λρ] = Tr[(I ⊗ |0⟩⟨0 | )U(ρ ⊗ |0⟩⟨0 | )U†]



VQA for estimating trace distance

First circuit estimates  and 
second estimates  

Reward function is  

Can use in a VQA to estimate 
trace distance

Tr[Λρ]
Tr[Λσ]

Tr[Λ(ρ − σ)]
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Performance of trace distance estimation
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True Trace Distance

3-qubit states generated randomly using hardware efficient ansatz 



VQAs for Estimating State Fidelity
We proposed many VQAs for estimating state fidelity 

Let us discuss the approach that gives the best performance 

 for pure states  and  

Consider that  
and  

Can then estimate pure-state fidelity by repeatedly performing 
Bell measurements on 

F(ψ, ϕ) = |⟨ψ |ϕ⟩ |2 ψ ϕ

|⟨ψ |ϕ⟩ |2 = Tr[SWAP( |ψ⟩⟨ψ | ⊗ |ϕ⟩⟨ϕ | )]
SWAP = |Φ+⟩⟨Φ+ | + |Φ−⟩⟨Φ− | + |Ψ+⟩⟨Ψ+ | − |Ψ−⟩⟨Ψ− |

|ψ⟩⟨ψ | ⊗ |ϕ⟩⟨ϕ |
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VQA for Estimating State Fidelity
Can use the optimization formula for fidelity along with SWAP 
observation to propose VQA for estimating fidelity:
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Performance of state fidelity estimation
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• Algorithm 6 is the one we discussed 
• All estimated using noiseless simulator 
• 3-qubit states generated randomly using hardware efficient ansatz



Channel Distinguishability Measures

Concepts can be generalized to channel fidelity, diamond 
distance, and multiple state discrimination: 
 
 
 
 

Can also build VQAs for these tasks

51

F(𝒩, ℳ) ≡ min
ρRA

F((idR ⊗ 𝒩)(ρRA), (idR ⊗ ℳ)(ρRA))

𝒩 − ℳ ⋄ ≡ max
ρRA

(idR ⊗ 𝒩)(ρRA) − (idR ⊗ ℳ)(ρRA)
1

psucc((p(x), ρx)x) ≡ max
(Λx)x

∑
x

p(x)Tr[Λxρx]



Performance of channel fidelity estimation
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• Unitary dilations of two-qubit 
channels generated randomly using 
hardware efficient ansatz 

• Noise resilience - training still occurs 
in the presence of noise 



Performance of diamond distance estimation
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Unitary dilations of one-qubit channels generated randomly using 
hardware efficient ansatz



Performance of multiple state discrimination
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Three one-qubit mixed states generated randomly using 
hardware efficient ansatz



VQAs for Symmetry Testing
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Notions of Symmetry

Let  denote a unitary representation of a group  

Let  denote the group projection  

A state  is -Bose symmetric if  

A state  is -symmetric if  for all  

A Hamiltonian  is -symmetric if  for all 

{U(g)}g∈G G

ΠG ≡
1

|G | ∑
g∈G

U(g)

ρ G ρ = ΠGρΠG

ρ G [U(g), ρ] = 0 g ∈ G

H G [U(g), H] = 0 g ∈ G
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Efficient Algorithm for -Bose Symmetry TestingG

Assumption:  efficient circuit implementing  for all  ∃ U(g) g ∈ G
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Efficient Algorithm for -Bose Symmetry TestingG

Accept if measurement gives all zeros outcome 

Algorithm’s acceptance probability  

 if and only if  is -Bose symmetric

= Tr[ΠGρ]

Tr[ΠGρ] = 1 ρ G
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Efficient Algorithm for Hamiltonian Symmetry Testing

Acceptance probability  

Algorithm accepts with certainty if and only if  is -symmetric

= 1 −
t2

2d |G | ∑
g∈G

[U(g), H]
2

2
+ O(t4)

H G
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Example: Transverse-Field Ising Model

Transverse-field Ising model w/ 
periodic boundary condition:  
 

Symmetries:  
and 

[HTFIM, (σX)⊗N] = 0
[HTFIM, Wπ] = 0 ∀π ∈ SN

60

HTFIM ≡ σZ
N ⊗ σZ

1 +
N−1

∑
i=1

σZ
i ⊗ σZ

i+1 +
N

∑
i=1

σX
i



-Symmetry Testing of StatesG
Suppose  a quantum circuit that prepares a purification  of  

Theorem: If  is -symmetric,   a purification that is -Bose 
symmetric, i.e., satisfying 
 

Thus, if  is -symmetric,  unitary  such that  

Idea: Send the purifying system to the prover, and then do a test 
to check for -Bose symmetry of the resulting state 

∃ ψρ ρ

ρ G ∃ ψρ
G G

ρ G ∃ P |ψρ
G⟩ = P ⊗ I |ψρ⟩

G
61

|ψρ
G⟩ = U(g) ⊗ U(g) |ψρ

G⟩ ∀g ∈ G



VQA for State -Symmetry TestingG

Acceptance probability , where  denotes the 

set of -symmetric states

= max
σ∈Sym

F(ρ, σ) Sym

G
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Example: Testing Invariance under Collective Rotations

Rotationally invariant state  satisfies  

Plot shows result of test on two-qubit state randomly generated using 
hardware efficient ansatz

ρ [ρ, RZ(ϕ) ⊗ RZ(ϕ)] = 0 ∀ϕ ∈ [0,2π]
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VQA for Hamiltonian Symmetry Testing
By modifying the previous Hamiltonian symmetry testing algorithm 
to optimize over input states, we get a VQA for this task: 
 
 
 

Acceptance probability 

=
1

|G | ∑
g∈G

U(g)e−iHtU(g)†
2

∞

≥ 1 −
2t
G ∑

g∈G
[U(g), H]

∞
− O(t2)
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Example of Separability Testing

We can use state symmetry testing for entanglement detection 

A bipartite state  is -extendible if 1)  such that 
 and 2)  

Symmetry group in this case is the symmetric group 

Every separable (unentangled) state is -extendible for all 

ρAB k ∃ωAB1⋯Bk

TrB2⋯Bk
[ω] = ρ [ωAB1⋯Bk

, IA ⊗ Wπ
B1⋯Bk

] = 0 ∀π ∈ Sk

k k
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Example of Separability Testing

Testing for 2-extendibility 

Two-qubit state generated 
randomly using hardware 
efficient ansatz
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All Python code freely available

SDPs - https://github.com/Dhrumil2910/Variational-Quantum-Algorithms-for-
Semidefinite-Programming 

Symmetry testing - https://github.com/mlabo15/Hamiltonian-Symmetry 

Estimating distinguishability measures - https://arxiv.org/src/2108.08406v2/anc
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Summary
VQAs constitute an optimization method for the NISQ era (but 
can also be used in the fault-tolerant era) 

Main idea is to use quantum computer for the simple task of 
estimating expectations of observables 

Leave all other calculations to classical computers 

We discussed applications to semidefinite programming, 
estimating distinguishability measures, and symmetry testing
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Outlook
How will these algorithms scale as the NISQ era proceeds? 

Is there a way to give a guaranteed runtime? 

Can we prove that these algorithms will give a quantum advantage? 

Can we prove that certain problem instances can be solved in BQP? 

What other problems can we solve using the VQA paradigm? 

How do different q. computing platforms compare when running these 
algorithms?
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