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First time visiting Davis, CA!
View from my hotel window at Residence Inn: 
 
 
 
 
 
 

Still safe to live here? California Gold rush ended a long time ago…
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Motivation

Noether’s theorem elucidates the fundamental role 
of symmetry in physics, in which every continuous 
symmetry of a physical system corresponds to a 
conservation law 

Goal: Use quantum computers to test symmetries of 
Hamiltonians 

In general, this task is computationally difficult for 
classical computers
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Recently accepted for PRL
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Hamiltonian Symmetry

Let  denote a unitary representation of a finite group  

A Hamiltonian  is -symmetric if  for all  

Can measure approximate symmetry via the commutator norm 

, where 

{U(g)}g∈G G

H G [U(g), H] = 0 g ∈ G

1
|G | ∑

g∈G

[U(g), H]
2

2
∥A∥2 ≡ Tr[A†A]
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Assumptions for Algorithm

Assumption:  efficient circuit implementing  for all   

Can take advantage of group structure in some cases to 
efficiently implement controlled-  circuit 

Hamiltonian is either -local or described by a sparse matrix (such 
that efficient Hamiltonian simulation is possible)

∃ U(g) g ∈ G

U(g)

k
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Efficient Algorithm for Hamiltonian Symmetry Testing

Initialize control qubits to all zeros state  and system qubits to maximally mixed state  

Apply quantum Fourier transform (QFT) to control qubits 

Apply controlled unitaries and Hamiltonian simulation  

Apply inverse QFT to control qubits, measure them, and accept iff the all zeros outcome occurs

|0⟩ I/d

exp(−iHt)

7



Acceptance probability

Acceptance probability  
 
 

Algorithm thus accepts with certainty if and only if  is -symmetric 

Also: It accepts approximately iff  is approximately -symmetric

H G

H G
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=
1

d |G | ∑
g∈G

Tr [U(g)†eiHtU(g)e−iHt]

= 1 −
t2

2d |G | ∑
g∈G

[U(g), H]
2

2
+ O(t4)



Steps of the algorithm

Initial state:     (suppose for now system  prepared as  ) 

After first QFT:  where  

After controlled gates and Hamiltonian simulation:  

Acceptance probability: 

|0⟩C |ψ⟩S S |ψ⟩

| + ⟩C |ψ⟩S | + ⟩C ≡ |G |− 1
2 ∑

g∈G

|g⟩C

|G |− 1
2 ∑

g∈G

|g⟩CU(g)†e−iHtU(g) |ψ⟩S

(⟨ + |C ⊗ IS) |G |− 1
2 ∑

g∈G

|g⟩CU(g)†e−iHtU(g) |ψ⟩S

2

2
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Simplification of acceptance probability

(⟨ + |C ⊗ IS) |G |− 1
2 ∑

g∈G

|g⟩CU(g)†e−iHtU(g) |ψ⟩S

2

2

= |G |−1
∑
g∈G

U(g)†e−iHtU(g) |ψ⟩S

2

2

= |G |−2 ⟨ψ | ∑
g′�∈G

U(g′�)†eiHtU(g′�) ∑
g∈G

U(g)†e−iHtU(g) |ψ⟩S

= |G |−2
∑

g,g′�∈G

⟨ψ |U(g′ �)†eiHtU(g′�)U(g)†e−iHtU(g) |ψ⟩S
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Simplification of acceptance probability (ctd.)

When  is chosen uniformly at random, then previous expression becomes 

 

|ψ⟩

𝔼ψ |G |−2
∑

g,g′�∈G

⟨ψ |U(g′�)†eiHtU(g′�)U(g)†e−iHtU(g) |ψ⟩S

= d−1 |G |−2
∑

g,g′�∈G

Tr [U(g′�)†eiHtU(g′�)U(g)†e−iHtU(g)]

= d−1 |G |−2
∑

g,g′�∈G

Tr [(U(g′�)U(g)†)†eiHtU(g′�)U(g)†e−iHt]

= d−1 |G |−1
∑
g∈G

Tr [U(g)†eiHtU(g)e−iHt]
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Expansion of acceptance probability

Acceptance probability  

is an even function of  

 After expanding in , odd powers in  vanish

1
d |G | ∑

g∈G

Tr [U(g)†eiHtU(g)e−iHt]
t

⇒ t t
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Expansion of acceptance probability (ctd.)
Can exploit Baker-Campbell-Hausdorff formula to find that  

where the nested commutator is defined as
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|G |−1
∑
g∈G

Tr [U(g)†eiHtU(g)e−iHt] = |G |−1
∑
g∈G

Tr[U†(g)
∞

∑
n=0

[(iHt)n, U(g)]
n! ]

= |G |−1
∑
g∈G

∞

∑
n=0

(−1)n t2n

(2n!) [(H)n, U(g)]
2

2

[(X)n, Y] ≡ [X, ⋯[X, [X

n times 

, Y]]⋯], [(X)0, Y] ≡ Y .



Expansion of acceptance probability (ctd.)
Thus, it expands as 
 

Keeping the first two terms gives 

Expression for approximate symmetry appears in acceptance probability
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1
d |G | ∑

g∈G

Tr [U(g)†eiHtU(g)e−iHt] = 1 −
t2

2d |G | ∑
g∈G

[U(g), H]
2

2
+ O(t4)

1
d |G | ∑

g∈G

Tr [U(g)†eiHtU(g)e−iHt] =
∞

∑
n=0

(−1)n t2n

d |G | (2n!) ∑
g∈G

[(H)n, U(g)]
2

2



Remark about continuous symmetries
For finite-dimensional systems, we can also use these algorithms to test for 
continuous symmetries (where  is a continuous group) 

This follows because the acceptance probability can be written in terms of the 
twirl , as

 

Twirl for continuous case is  

Invoking Caratheodory’s theorem, there exists a finite implementation of the twirl

G

𝒯G( ⋅ ) ≡ |G |−1
∑
g∈G

U(g)†( ⋅ )U(g)

1
d |G | ∑

g∈G

Tr [U(g)†eiHtU(g)e−iHt] =
1
d

Tr [𝒯G(eiHt)e−iHt]

𝒯G( ⋅ ) ≡ ∫ dμ(g) U(g)†( ⋅ )U(g)
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Computational complexity

We can also prove that estimating the acceptance probability is a 
DQC1-complete problem 

This gives evidence that the acceptance probability will be 
difficult to estimate using a classical computer
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Review of DQC1
DQC1: Only one qubit can be prepared in a pure state and all others 
are maximally mixed  

Thus weaker than bounded quantum polynomial time computations
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Review of DQC1 (ctd.)

Acceptance probability in this case given by 
 

Goal is to estimate this quantity to within additive error

Tr[( |1⟩⟨1 | ⊗ I)U( |0⟩⟨0 | ⊗ I/d)U†]
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Containment in DQC1
DQC1 complexity class does not change if there are  pure 
qubits, because there is only a polynomial increase in number of 
repetitions needed to estimate acceptance probability 

By inspection, algorithm thus contained in DQC1

log log d
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Hardness for DQC1

Known: Estimating  is DQC1-complete, where  is unitary generated by quantum circuit 

We prove that estimating  is also DQC1-complete, by considering controlled unitary 
 

Then pick the group to be  with representation , where , and 
the Hamiltonian to be one that realizes  via Hamiltonian evolution, where  is a  
Hadamard gate 

For the above choices, 

ℜ[Tr[U]]
d

U

ℜ[Tr[U2]]/d

( |0⟩⟨0 | ⊗ I + |1⟩⟨1 | ⊗ U) (σX ⊗ I)
ℤ2 {I, V} V = |0⟩⟨1 | ⊗ U + |1⟩⟨0 | ⊗ U†

H2 ⊗ I H2 2 × 2

(d |G | )−1 ∑
g∈G

Tr[U†(g)eiHtU(g)e−iHt] = ℜ[Tr[U2]]/2d
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Example: Transverse-Field Ising Model

Transverse-field Ising model w/ 
periodic boundary condition:  
 

Symmetries:  
and 

[HTFIM, (σX)⊗N] = 0
[HTFIM, Wπ] = 0 ∀π ∈ SN

21

HTFIM ≡ σZ
N ⊗ σZ

1 +
N−1

∑
i=1

σZ
i ⊗ σZ

i+1 +
N

∑
i=1

σX
i



VQA for Hamiltonian Symmetry Testing
By modifying the previous Hamiltonian symmetry testing algorithm to 
optimize over input states, we get a variational quantum algorithm: 
 
 
 

Acceptance probability 

=
1

|G | ∑
g∈G

U(g)e−iHtU(g)†
2

∞

≥ 1 −
2t
G ∑

g∈G
[U(g), H]

∞
− O(t2)
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Summary

Proposed an efficient quantum algorithm for testing Hamiltonian symmetry 

Acceptance probability contains familiar expression of Hamiltonian 
symmetry 

Gave evidence that acceptance probability cannot be estimated efficiently 
by a classical computer
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Outlook

Would like to implement larger instances of algorithm on existing 
quantum computers 

Would like to modify these algorithms to learn Hamiltonian symmetry 

Would like to study variational quantum algorithm further and 
implement it on existing quantum computers 

Can we use these algorithms to solve open problems in physics?
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