
Inevitability of knowing less than nothing
Mark M. Wilde 

School of Electrical and Computer Engineering, Cornell University 

 
 

Joint work with Gilad Gour, Sarah Brandsen, Isabelle Geng

Available as arXiv:2208.14424



Main goal of talk

Give an axiomatic formulation of quantum conditional entropy  

Prove that every function satisfying the two axioms must take on 
negative values for certain entangled quantum states 

Justifies why any plausible conditional entropy takes on negative 
values in quantum information (“knowing less than nothing”)



Postulates of classical mechanics
State of a classical system described by a probability vector , 
with entries satisfying 

Classical evolution described by a stochastic map/matrix, called 
a classical channel 

Probability vectors for composite systems are elements of 
tensor-product vector spaces

⃗p

px ≥ 0 ∀x, ∑
x

px = 1
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What is entropy?
“Knowledge gained upon learning the outcome of a 
random experiment” 

Die Toss: if deterministic, don’t learn anything by 
performing the toss 

If uniformly random, we learn  bits 

If successive tosses are independent, expect 
entropy to be additive 

(stick to finite random variables throughout)

log2 d



Formulas for entropy

Shannon entropy      

Renyi entropy   , where 

H(X) ≡ ∑
x

p(x)log2( 1
p(x) )

Hα(X) ≡
1

1 − α
log2 ∑

x

pα(x) α ∈ (0,1) ∪ (1,∞)



Axiomatic approach to entropy

Shannon entropy uniquely defined by some axioms 

Dropping one of them leads to the Renyi family 

Why are these natural? 

We can reduce to just two axioms and derive several basic 
properties of entropy from these



Two basic axioms for entropy

Entropy  is a function that is not equal to the zero function and  

1) is an uncertainty measure 

2) additive for product distributions: 

H

H( ⃗p ⊗ ⃗q ) = H( ⃗p ) + H( ⃗q )

Gour and Tomamichel, arXiv:2006.11164



Mixing operations define uncertainty measures

What is a mixing operation? A random 
relabeling of values 

Mathematically: , where 

 is a probability distribution,  is 
a set of permutation matrices 

Mixing operations preserve the uniform 
distribution: 

M ⃗p ≡ ∑
i

qiPi ⃗p

{qi}i {Pi}i

⃗u = M ⃗u



Uncertainty measures

Let us define a function  to be an uncertainty measure for a 
probability distribution  if 

1) It does not decrease under the action of a mixing operation: 
 

2) It is invariant under embeddings: 

f
⃗p

f( ⃗p ) ≤ f(M ⃗p )

f( ⃗p ) = f( ⃗p ⊕ ⃗0 )



Two basic axioms for entropy

Entropy  is a function that is not equal to the zero function and  

1) is an uncertainty measure 

2) additive for product distributions: 

H

H( ⃗p ⊗ ⃗q ) = H( ⃗p ) + H( ⃗q )

Gour and Tomamichel, arXiv:2006.11164



Consequences of entropy axioms

 is non-negative for all probability distributions and equal to 
zero for degenerate distributions 

 is maximal for uniform distribution  of size  (among all 
distributions of size ) 

if we normalize  such that , then 

H

H ⃗u d d
d

H H( ⃗u 2) = 1 H( ⃗u d) = log2 d

Gour and Tomamichel, arXiv:2006.11164



What is conditional entropy?

“Knowledge gained upon learning outcome of  given that value of  has 
already been observed” (  and  are two random variables) 

If  and  independent, no difference between entropy & conditional entropy 

If dependent, knowledge of  informs about , and so conditional entropy of 
 given  is not greater than entropy of  

Expect also to be additive for independent trials

X Y
X Y

X Y

Y X
X Y X



Formulas for conditional entropy

Conditional Shannon entropy 

 

Conditional Renyi entropy 

H(X |Y) ≡ H(XY) − H(Y) = ∑
y

p(y)[∑
x

p(x |y) log2( 1
p(x |y) )]

Hα(X |Y) =
1

1 − α
log2 ∑

x,y

pα(x, y)p1−α(y)



Two basic axioms for conditional entropy

Conditional entropy  is a function that is not equal to the zero 
function and  

1) is a conditional uncertainty measure 

2) additive for product distributions: 

H

H(X1X2 |Y1Y2) ⃗p X1Y1⊗ ⃗q X2Y2
= H(X1 |Y1) ⃗p X1Y1

+ H(X2 |Y2) ⃗q X2Y2



Maximal conditional uncertainty

A mixing operation preserves the uniform distribution, and this implies 
that the uniform distribution has maximal uncertainty 

What is a bivariate distribution of maximal conditional uncertainty? 
First guess: ⃗u XY = ⃗u X ⊗ ⃗u Y



Maximal conditional uncertainty (ctd.)

However, many others: , where  is an arbitrary distribution 

Conditional uncertainty: how well one can guess  when  is available 

If  is independent of , then it is of no use in trying to guess  and 
uniform distribution for  is most difficult to guess 

This justifies  as a maximal conditional 
uncertainty set

⃗u X ⊗ ⃗q Y ⃗q Y

X Y

Y X X
X

{ ⃗u X ⊗ ⃗q Y : ⃗q Y ∈ 𝒫Y}



Conditional mixing operations

A channel  is a conditional mixing operation if for every 
distribution , there exists a distribution  such that 

 

That is, conditional mixing operations preserve the set of bivariate 
distributions of maximal conditional uncertainty 

MXY→XY′�

⃗q Y ⃗rY′�

MXY→XY′�( ⃗u X ⊗ ⃗q Y) = ⃗u X ⊗ ⃗rY′�



Conditional uncertainty measure

A function  is a conditional uncertainty measure for a bivariate 
probability distribution  if 

1) It does not decrease under the action of a conditional mixing 
operation:  

2) It is invariant under a local embedding of : 

, where  is a local embedding

f
⃗p XY

f( ⃗p ) ≤ f(M ⃗p )

X

f( ⃗p ) = f((UX→X′� ⊗ IY) ⃗p ) UX→X′ � = [I
0]



Two basic axioms for conditional entropy

Conditional entropy  is a function that is not equal to the zero 
function and  

1) is a conditional uncertainty measure 

2) additive for product distributions: 

H

H(X1X2 |Y1Y2) ⃗p X1Y1⊗ ⃗q X2Y2
= H(X1 |Y1) ⃗p X1Y1

+ H(X2 |Y2) ⃗q X2Y2



Consequences of axioms

 is non-negative for all bivariate probability distributions 

 reduces to an entropy for product distributions: 
 

 is maximal for uniform distribution of size  (among all 
distributions of size ) 

if we normalize  such that , then 

H

H
H(X |Y) ⃗p X⊗ ⃗q Y

= H( ⃗p X)

H d
d

H H( ⃗u 2) = 1 H( ⃗u d) = log2 d



Let us now enter the quantum world….



Postulates of quantum mechanics

State of a quantum system described by a density operator : 

Evolution of a quantum system described by a completely 
positive and trace-preserving map, called a quantum channel 

Density operators for composite systems act on tensor-product 
Hilbert spaces

ρ

ρ ≥ 0, Tr[ρ] = 1
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What is quantum entropy?

Inspired by the classical case, let us take an axiomatic approach



Axiomatic approach to quantum entropy

Two axioms: 

1)  is an uncertainty measure 

2) Additivity: 

H

H(ρ ⊗ σ) = H(ρ) + H(σ)



Quantum mixing operation

 is a quantum mixing operation if it is a channel that preserves 
the uniform state: 
ℳ

ℳ(ud) = ud



Uncertainty measure

A function  is an uncertainty measure for a quantum state  if 

1) It does not decrease under action of a quantum mixing operation: 
 

2) It is invariant under embeddings: 

f ρ

f(ρ) ≤ f(ℳ(ρ))

f(ρ) = f(ρ ⊕ 0)



Axiomatic approach to quantum entropy

Two axioms: 

1)  is an uncertainty measure 

2) Additivity: 

H

H(ρ ⊗ σ) = H(ρ) + H(σ)



Consequences of axioms

 is non-negative for all quantum states and equal to zero for 
pure states 

 is maximal for uniform state  of dimension  (among all 
distributions of size ) 

if we normalize  such that , then 

H

H ud d
d

H H(u2) = 1 H(ud) = log2 d



Formulas for quantum entropy

von Neumann entropy      

Renyi entropy   , where 

H(ρ) ≡ − Tr[ρ log2 ρ]

Hα(ρ) ≡
1

1 − α
log2 Tr[ρα] α ∈ (0,1) ∪ (1,∞)



Prelude to quantum conditional entropy

Conditional entropy is defined for a bipartite state 

Before getting to it, let us discuss the phenomenon of quantum 
entanglement and features of it that distinguish it from the 
classical case of bivariate distributions



What is entanglement?

Strong correlation that two parties can share 

Key phenomenon that distinguishes the 
classical and quantum theories of information 

Useful for teleportation and quantum key 
distribution

31



Mathematical definition of entanglement

A state of systems A and B is entangled if it cannot be written as 
 
 
where  is a prob. distribution and  and  are sets of states 

Separable states can be prepared by local operations and classical 
communication (i.e., a classical procedure)

pX {σx
A}x {τx

B}x

∑
x

pX(x)σx
A ⊗ τx

B
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“I would not call that one but rather the characteristic trait of 
quantum mechanics, the one that enforces its entire departure 

from classical lines of thought.

– Erwin Schroedinger, 1935
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“Another way of expressing the peculiar situation is: the best 
possible knowledge of a whole does not necessarily include the 

best possible knowledge of all its parts, even though they may be 
entirely separated and therefore virtually capable of being ‘best 

possibly known,’ i.e. of possessing, each of them, a representative 
of its own.”

– Erwin Schroedinger, 1935

34



Basic notation

Dirac notation widely used in quantum information: 
 

Above are “kets.” Dual vectors are “bras”:

|0⟩ ≡ [1
0], |1⟩ ≡ [0

1]

⟨0 | ≡ [1 0], ⟨1 | ≡ [0 1]

Paul A. M. Dirac
35



Basic form of entanglement

The most basic form is the ebit / Bell state / EPR pair: 
 
 
where 

Closest classical analog of entanglement is a shared secret key, 
due to concept of monogamy of entanglement

|Φ+⟩⟨Φ+ |AB

|Φ+⟩AB :=
1

2
( |0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B)

36



Bell state

The Bell state is what we call a pure state, which we definitely 
know and thus should have zero entropy 

Reduced state of Bob’s system is a uniformly random mixture of 
 and  and thus should have entropy equal to one bit 

Thus, the knowledge of the whole is greater than the knowledge 
of the parts, and so the conditional entropy goes negative….

|0⟩⟨0 | |1⟩⟨1 |



Widely used formulas for conditional entropy

Given a bipartite state : 

von Neumann conditional entropy  

Petz-Renyi conditional entropy 

 where 

ρAB

H(A |B)ρ ≡ H(ρAB) − H(ρB)

Hα(A |B)ρ ≡
1

1 − α
log2 Tr[ρα

AB(IA ⊗ ρ1−α
B )] α ∈ (0,1) ∪ (1,∞)



Two basic axioms for conditional entropy

Conditional entropy  is a function that is not equal to the zero 
function and  

1) is a conditional uncertainty measure 

2) additive for product states: 

H

H(A1A2 |B1B2)ρA1B1⊗σA2B2
= H(A1 |B1)ρA1B1

+ H(A2 |B2)σA2B2



Conditional mixing operations

A channel  is a conditional mixing operation if for every state 
, there exists a state  such that  

That is, conditional mixing operations preserve the set of states of 
maximal conditional uncertainty 

ℳAB→AB′�

σB ωB′� ℳAB→AB′�(uA ⊗ σB) = uA ⊗ ωB′�



Conditional uncertainty measure

Let us define a function  to be a conditional uncertainty measure 
for a bipartite state  if 

1) It does not decrease under the action of a conditional mixing 
operation:  

2) It is invariant under a local embedding of : 
, where  is a local 

embedding

f
ρAB

f(ρAB) ≤ f(ℳ(ρAB))

A
f(ρAB) = f((UA→A′ � ⊗ idB)(ρAB)) UA→A′�(ωA) = ωA ⊕ 0



Two basic axioms for conditional entropy

Conditional entropy  is a function that is not equal to the zero 
function and  

1) is a conditional uncertainty measure 

2) additive for product states: 

H

H(A1A2 |B1B2)ρA1B1⊗σA2B2
= H(A1 |B1)ρA1B1

+ H(A2 |B2)σA2B2



Consequences of axioms

 is non-negative for all separable, unentangled states 

 is can be negative for some entangled states! 

 reduces to an entropy for product states: 
 

 is maximal for 

H

H

H
H(A |B)ρA⊗σB

= H(ρA)

H {uA ⊗ σB : σB ∈ 𝒟B}



Proof of negative conditional entropy

Construct channel from  to , the last of which has dimension  

Channel first discards system  

Then performs measurement  & prepares pure state 

 if 1st outcome obtained & orthogonal state  else 

This is a conditional mixing operation

Ã, A, B A′� |A |2

Ã

{ΦAB, IAB − ΦAB}

|1⟩⟨1 |A′�

IA′� − |1⟩⟨1 |A′�

|A |2 − 1



Proof of negative conditional entropy (ctd.)

Then H(A |B)ΦAB
+ log2 |A | = H(A |B)ΦAB

+ H(Ã)uÃ

= H(AÃ |B)ΦAB⊗uÃ

≤ H(A′�)𝒩ABÃ→A′ �(ΦAB⊗uÃ)

= H(A′�)|1⟩⟨1|

= 0



Summary

Formulated an axiomatic approach to quantum conditional entropy, 
based on two sensible and simple axioms 

Used these axioms in a simple proof to conclude that quantum 
conditional entropy is negative for certain entangled states 

Open question: In our work, we proved that the conditional min-
entropy is a lower bound on any plausible conditional entropy. We 
would like to prove that the conditional max-entropy is an upper bound


