Quantum Forbidden-Interval Theorem for Stochastic Resonance with Squeezed Light

Mark M. Wilde and Bart Kosko

Signal and Image Processing Institute, Department of Electrical Engineering
University of Southern California, Los Angeles, California 90007 USA

What is Stochastic Resonance?

Classical Model: Binary Threshold Neuron

Weak Binary Input Signals

Non-linear Threshold Detection

Noise
(any finite-variance noise or alpha-stable noise)

Quantum Model: Squeezed Light

Typical Inverted-U Stochastic Resonance (SR) curve

Quantum Proof Strategy

 Mutual Information (MI) vanishes if noise vanishes and squeezing becomes large

\[\sigma \to 0 \quad \text{and} \quad r \to \infty \implies I(A; B) \to 0 \]

SR effect iff quantum noise mean not in forbidden interval:

\[\mu \notin [\theta - \alpha, \theta + \alpha] \]

Simulation Results

Gaussian Noise Case

Cauchy Noise Case

References