## Entanglement Boosts Quantum Turbo Codes

## Mark M. Wilde

School of Computer Science McGill University



#### Joint work with **Min-Hsiu Hsieh** arXiv:1010.1256

International Symposium on Information Theory Saint-Petersburg, Russia Monday, August 1, 2011

## **Quantum Convolutional Codes**



H. Ollivier and J.-P. Tillich, "Description of a quantum convolutional code," PRL (2003)

# State Diagram

Useful for analyzing the properties of a quantum convolutional code

How to construct? Add an edge from one memory state to another if a logical operator and ancilla operator connects them:



State diagram for our example encoder

Tracks the flow of logical operators through the convolutional encoder

# Catastrophicity

**Quantum Convolutional Decoder** 



Catastrophic error propagation!

# Catastrophicity (ctd.)

Check state diagram for cycles of zero physical weight with non-zero logical weight

(same as classical condition)



Viterbi. Convolutional codes and their performance in communication systems. IEEE Trans. Comm. Tech. (1971)

## Recursiveness



A **recursive encoder** has an *infinite response* to a weight-one logical input

## **No-Go Theorem**

#### Both **recursiveness** and **non-catastrophicity** are desirable properties for a quantum convolutional encoder when used in a quantum turbo code

But a quantum convolutional encoder cannot have both! (Theorem 1 of PTO)

D. Poulin, J.-P. Tillich, and H. Ollivier, "Quantum serial turbo-codes," *IEEE Transactions on Information Theory*, vol. 55, no. 6, pp. 2776–2798, June 2009.

## Idea: Add Entanglement



## State Diagram

Add an edge from one memory state to another if a logical operator and identity on ebit connects them:

$$(M_{i-1}: L_i: I)U = (P_i: M_i)$$

State diagram for EA example encoder

Tracks the flow of logical operators through the convolutional encoder



**Ebit removes half the edges!** 

# Catastrophicity

Quantum Convolutional Decoder



#### Catastrophic error propagation eliminated! (Bell measurements detect Z errors)

# Catastrophicity (ctd.)

Check state diagram for cycles of zero physical weight with non-zero logical weight



## Recursiveness



#### A **recursive encoder** has an *infinite response* to a weight-one logical input

## Non-Catastrophic and Recursive Encoder



Entanglement-assisted encoders can satisfy both properties simultaneously!

## Quantum Turbo Codes



A quantum turbo code consists of two interleaved and serially concatenated quantum convolutional encoders

#### Performance **appears to be good** from the results of numerical simulations

D. Poulin, J.-P. Tillich, and H. Ollivier, "Quantum serial turbo-codes," *IEEE Transactions on Information Theory*, vol. 55, no. 6, pp. 2776–2798, June 2009.

## Simulations

Selected an encoder randomly

with one information qubit, two ancillas, and three memory qubits

Non-catastrophic and quasi-recursive

#### **Distance spectrum:**

 $11x^5 + 47x^6 + 253x^7 + 1187x^8 + 6024x^9 + 30529x^{10} + 153051x^{11} + 771650x^{12} \\$ 

Serial concatenation with itself gives a rate 1/9 quantum turbo code

Replacing both ancillas with ebits gives EA encoder

Non-catastrophic and recursive

**Distance spectrum improves dramatically:** 

 $2x^9 + x^{10} + 5x^{11} + 8x^{12}$ 

Serial concatenation with itself gives a rate 1/9 quantum turbo code with 8/9 entanglement consumption rate

#### Compare with the Hashing Bounds



Bennett *et al.*, "Entanglement-assisted classical capacity," (2002) Devetak *et al.*, "Resource Framework for Quantum Shannon Theory (2005)

## **Unassisted Turbo Code**



## Fully Assisted Turbo Code



## "Inner" Entanglement Assisted Turbo Code



### Adding Noise to Bob's Share of the Ebits



## No-Go Theorem for Subsystem or Classically-Enhanced Codes



Encoder of the above form cannot be recursive and non-catastrophic

**Proof**: Consider recursive encoder. Change gauge qubits and cbits to ancillas (preserves recursiveness) Must be catastrophic (by PTO) Change ancillas back to gauge qubits and cbits (preserves catastrophicity).

### Conclusion

- Entanglement gives both a theoretical and practical boost to quantum turbo codes
- Recursiveness is essential to good performance of the assisted code (not mere quasi-recursiveness)
- No-Go Theorem for subsystem and classically-enhanced encoders

**Open question**: Find an EA turbo code with positive catalytic rate that outperforms a PTO encoder

**Open question**: Can turbo encoders with logical qubits, cbits, and ebits come close to achieving trade-off capacity rates?