Additivity in Quantum Shannon Theory

Mark M. Wilde

School of Computer Science
McGill University

2010 International Workshop on Quantum Information Science
ERATO-SORST Project, Tokyo, Japan
Monday, March 8, 2010
Tutorial Overview

Classical Tasks
- Transmission of classical information
- Transmission of private classical information

Quantum Tasks
- Transmission of classical information
- Trans. of classical info. with help of unlimited entanglement
- Transmission of quantum information
- Transmission of private classical information
- Trade-off coding
“Dynamic” Shannon Theory

Given a large number n of uses of a classical channel, what is the largest rate of reliable communication?

(Classical channel is the stochastic map $\mathcal{N} \equiv p_{Y|X}(y|x)$)

Given a large number n of uses of a classical channel, what is the largest rate of reliable communication?

(where rate is $\frac{\log(M)}{n}$)
Shannon's Capacity Theorem

Largest reliable rate is the capacity

\[I(\mathcal{N}) \equiv \max_{p_X(x)} I(X; Y) \]

Might call this measure the mutual information of the classical channel

Proof follows from three important steps:

1) Direct Coding Theorem (construction of random code)
2) Converse Theorem (bounding the channel information throughput)
3) Additivity of the proposed channel information measure
The Importance of Additivity

Implies a complete understanding of a channel's transmission capabilities

Implies the proposed capacity formula is the correct one

Without additivity, the best characterization is an intractable “regularization”

\[I_{\text{reg}}(N) \equiv \lim_{n \to \infty} \frac{1}{n} I(N^\otimes n) \]

(pretty much useless 😞)

Justification of postdoc salary:
“Probably every quantum information theorist worth his salt has had a go on that one.”

-Werner 2005
Additivity of Classical Channels

Given two classical channels:

\[\mathcal{N}_1 \equiv p_{Y_1|X_1}(y_1|x_1) \]
\[\mathcal{N}_2 \equiv p_{Y_2|X_2}(y_2|x_2) \]

Does additivity of channel mutual information hold?

\[I(\mathcal{N}_1 \otimes \mathcal{N}_2) = I(\mathcal{N}_1) + I(\mathcal{N}_2) \]

“Easy direction” always holds:

\[I(\mathcal{N}_1 \otimes \mathcal{N}_2) \geq I(\mathcal{N}_1) + I(\mathcal{N}_2) \]

Choose \(p_{X_1,X_2}(x_1, x_2) = p_{X_1}^*(x_1)p_{X_2}^*(x_2) \)
Additivity of Classical Channels (Ctd)

Does “hard direction” hold?

\[I(\mathcal{N}_1 \otimes \mathcal{N}_2) \leq I(\mathcal{N}_1) + I(\mathcal{N}_2) \]

Correlations between inputs do not increase information throughput?

Yes!

(and holds for all classical channels)

Follows because \(Y_1 \) independent of \(X_2 \) and \(Y_2 \) is conditionally independent of \(X_1 \) and \(Y_1 \) given \(X_2 \)
Additivity of classical channel mutual information holds:

\[I(\mathcal{N}_1 \otimes \mathcal{N}_2) = I(\mathcal{N}_1) + I(\mathcal{N}_2) \]

By induction, it holds that

\[I_{\text{reg}}(\mathcal{N}) = I(\mathcal{N}) \]

(No need for regularization)

Implies a complete understanding of the transmission capabilities of classical memoryless channels.
Classical Wiretap Channel

Wiretap channel is the stochastic map $\mathcal{N} \equiv p_{Y,Z|X}(y,z|x)$

Private information of the wiretap channel:

$$P(\mathcal{N}) \equiv \max_{p_X(x)} I(X;Y) - I(X;Z)$$

Additivity of Classical Wiretap Channels

Given two classical wiretap channels:
\[\mathcal{N}_1 \equiv p_{Y_1, Z_1 | X_1}(y_1, z_1 | x_1) \]
\[\mathcal{N}_2 \equiv p_{Y_2, Z_2 | X_2}(y_2, z_2 | x_2) \]

Does additivity of channel private information hold?

\[P(\mathcal{N}_1 \otimes \mathcal{N}_2) = P(\mathcal{N}_1) + P(\mathcal{N}_2) \]

“Easy direction” again always holds:

\[P(\mathcal{N}_1 \otimes \mathcal{N}_2) \geq P(\mathcal{N}_1) + P(\mathcal{N}_2) \]

Choose
\[p_{X_1,X_2}(x_1, x_2) = p_{X_1}^*(x_1)p_{X_2}^*(x_2) \]
Additivity of Classical Wiretap Channels

Does “hard direction” hold?

\[P(\mathcal{N}_1 \otimes \mathcal{N}_2) \leq P(\mathcal{N}_1) + P(\mathcal{N}_2) \]

Not in general, but does if correlations in Bob's outputs are greater than Eve's:

\[I(Y_1; Y_2) \geq I(Z_1; Z_2) \]

Concept of **degradability** useful in quantum setting as well
Sending Classical Data over Quantum Channels

Correlate classical data with quantum states:

$$\sum_x p_X(x) |x\rangle \langle x| X \otimes \mathcal{N}^{A' \rightarrow B} (\phi^{A'}_x)$$

Holevo information of a quantum channel:

$$\chi(\mathcal{N}) \equiv \max \{ p_X(x), \phi_x \} I(X; B)$$

Holevo (1998), Schumacher and Westmoreland (1997)
Additivity of Holevo Information?

Given two quantum channels (CPTP maps), does **additivity** of channel Holevo information hold?

\[\chi(\mathcal{N}_1 \otimes \mathcal{N}_2) = \chi(\mathcal{N}_1) + \chi(\mathcal{N}_2) \]

"Easy direction" always holds:

\[\chi(\mathcal{N}_1 \otimes \mathcal{N}_2) \geq \chi(\mathcal{N}_1) + \chi(\mathcal{N}_2) \]

Can choose ensemble on **LHS** to be a **tensor product** of the ones that individually maximize **RHS**
Additivity of Holevo Information?

Does “hard direction” hold?

\[\chi(\mathcal{N}_1 \otimes \mathcal{N}_2) \leq \chi(\mathcal{N}_1) + \chi(\mathcal{N}_2) \]

If true for a given channel, then entanglement does not boost information throughput according to the Holevo measure.
Simplest Example for Holevo Additivity

Suppose one channel is entanglement-breaking:

Then additivity holds:

$$\chi(\mathcal{N}_1 \otimes \mathcal{N}_2) = \chi(\mathcal{N}_1) + \chi(\mathcal{N}_2)$$

Proof: State on Bob's systems is separable

$$\sum_y \rho_{y|x}(y|x) \rho_{x,y}^{B_1} \otimes \sigma_{x,y}^{B_2}$$

Give classical variable Y to Alice and separable state becomes **product** when conditioned on Y

Random Counterexample to Holevo Additivity

Consider random unitary channels:

\[\mathcal{N}(\rho) \equiv \sum_i p_I(i) U_i \rho U_i^\dagger \]

\[\overline{\mathcal{N}}(\rho) \equiv \sum_i p_I(i) U_i^* \rho U_i^T \]

where unitaries selected according to Haar measure

Then **additivity fails** according to Hastings' probabilistic argument

(and Shor's equivalence of additivity conjectures):

\[\chi(\mathcal{N} \otimes \overline{\mathcal{N}}) > \chi(\mathcal{N}) + \chi(\overline{\mathcal{N}}) \]

Open problem to find **explicit counterexamples** to additivity

(rather than a random construction)

The **HSW formula** is **unsatisfactory** as a measure of a quantum channel's ability to transmit classical information.

Regularization is necessary (for now):

$$C(\mathcal{N}) = \lim_{n \to \infty} \frac{1}{n} \chi(\mathcal{N}^\otimes n)$$

Classical capacity **could still be additive** (we just don't know the right formula)
Sending Classical Data over EA Quantum Channels

Correlate classical data with entangled quantum states:

$$\sum_x p_X(x) |x\rangle \langle x| X \otimes \mathcal{N}^{A' \rightarrow B} (\phi_A^{AA'})$$

Mutual information of a quantum channel:

$$I(\mathcal{N}) \equiv \max \{p_X(x), \phi_x\} \quad I(AX; B)$$

Bennett et al. (2002), Shor (2004)
Additivity of Channel Mutual Information

First, can simplify expression for channel mutual info.

\[I(\mathcal{N}) \equiv \max_{\phi} I(A; B) \]

(follows from concavity of entropy and a few other arguments...)

Given two quantum channels, does additivity of channel mutual information hold?

\[I(\mathcal{N}_1 \otimes \mathcal{N}_2) = I(\mathcal{N}_1) + I(\mathcal{N}_2) \]

“Easy direction” always holds:

\[I(\mathcal{N}_1 \otimes \mathcal{N}_2) \geq I(\mathcal{N}_1) + I(\mathcal{N}_2) \]

Can choose ensemble on LHS to be a tensor product of the ones that individually maximize RHS
Additivity of Channel Mutual Information

Does “hard direction” hold?

\[I(\mathcal{N}_1 \otimes \mathcal{N}_2) \leq I(\mathcal{N}_1) + I(\mathcal{N}_2) \]

Yes!

(follows from “one part subadditivity” and “three parts strong subadditivity”)

\[
I(A; B_1 B_2) = H(B_1 B_2) + H(B_1 B_2|E_1 E_2) \\
\leq H(B_1) + H(B_1|E_1) + H(B_2) + H(B_2|E_2) \\
= I(AA'_2; B_1) + I(AA'_1; B_2)
\]
Additivity of quantum channel mutual information holds for all quantum channels!

\[I(\mathcal{N}_1 \otimes \mathcal{N}_2) = I(\mathcal{N}_1) + I(\mathcal{N}_2) \]

By induction, it holds that

\[I_{\text{reg}}(\mathcal{N}) = I(\mathcal{N}) \]

(No need for regularization)

Implies a complete understanding of the transmission capabilities of a quantum channel assisted with unlimited entanglement

Hayden's Musing:
What's so special about entanglement assistance? It makes quantum Shannon theory and quantum coding theory both “look” classical (c.f., talk of Min-Hsiu Hsieh)
Preserving entanglement is the same as transmitting quantum data

\[N^{A' \rightarrow B}(\phi AA') \]

Coherent information of a quantum channel:

\[Q(N) \equiv \max_{\phi} I(A\rangle B) \]

where \[I(A\rangle B) \equiv H(B) - H(AB) \]

A Useful Alternate Viewpoint

Coherent information of a quantum channel:

\[Q(\mathcal{N}) \equiv \max_{\phi} H(B) - H(E) \]

Qualitatively “looks like” classical wiretap setting

Devetak (2005)
Additivity of Channel Coherent Information

Given two quantum channels, does \textit{additivity} of channel coherent information hold?

\[Q(N_1 \otimes N_2) = Q(N_1) + Q(N_2) \]

"Easy direction" always holds:

\[Q(N_1 \otimes N_2) \geq Q(N_1) + Q(N_2) \]

Can choose ensemble on \textbf{LHS} to be a \textbf{tensor product} of the ones that individually maximize \textbf{RHS}.

Additivity of Channel Coherent Information

Does “hard direction” hold?

$$Q(\mathcal{N}_1 \otimes \mathcal{N}_2) \leq Q(\mathcal{N}_1) + Q(\mathcal{N}_2)$$

Not Always!

But does if

$$I(B_1; B_2) \geq I(E_1; E_2)$$

(holds for degradable channels)

\[
I(A)B_1B_2 = H(B_1B_2) - H(E_1E_2) \\
= H(B_1) - H(E_1) + H(B_2) - H(E_2) - [I(B_1; B_2) - I(E_1; E_2)] \\
\leq H(B_1) - H(E_1) + H(B_2) - H(E_2) \\
= I(AA'_2)B_1 + I(AA'_1)B_2
\]
Counterexample to Coherent Info. Additivity

Noisy quantum channel is the depolarizing channel

\[\mathcal{N}(\rho) = (1 - p)\rho + p\frac{I}{2} \]

Concatenating a random code with a five-qubit repetition code outperforms a random code

Implies that \(Q(\mathcal{N}^{\otimes 5}) > 5Q(\mathcal{N}) \)

Technique essentially exploits that we don't need to correct all quantum errors (degeneracy of quantum codes)

The **LSD formula** is unsatisfactory as a measure of a quantum channel's ability to transmit quantum information

DiVincenzo, Shor, Smolin (1996)
Even More Suprising...

Quantum capacity itself cannot be an additive function on two different quantum channels.

- **Horodecki channel** with Zero Quantum Capacity *(can only create bound entangled states)*
- **50% erasure channel** with Zero Quantum Capacity *(by the no-cloning theorem)*

But the joint channel has Nonzero Quantum Capacity!

Smith and Yard (2008)
Sending Private Data over Quantum Channels

Correlate classical data with channel input

\[\sum_{x} p_X(x) |x\rangle\langle x|^{X} \otimes U_{\mathcal{N}}^{A' \rightarrow BE}(\rho_{x}^{A'}) \]

Private information of a quantum channel:

\[P(\mathcal{N}) \equiv \max_{\{p_X(x), \rho_x\}} I(X; B) - I(X; E) \]

Additivity of Channel Private Information

Additivity does not always hold,
But does for the class of degradable channels
(proof similar to quantum case but slightly different)

In fact, quantum capacity is the same as private capacity for the class of degradable channels

In general, the private information is unsatisfactory as a formula to characterize private information transmission
(does not give a tractable optimization problem)

Trade-off Coding

Suppose Alice wants to send classical and quantum data With the help of shared entanglement

(*generalizes many of the above settings*)

Hsieh and Wilde (2009)
Trade-off Coding (Ctd.)

Let C be classical data rate, Q quantum data rate, and E entanglement consumption rate.

Three-dimensional capacity region is union of

$$ C + 2Q \leq I(AX; B) $$

$$ Q \leq I(A\rangle BX) + E $$

$$ C + Q \leq I(X; B) + I(A\rangle BX) + E $$

over all states of the form:

$$ \sum_{x} p_X(x) |x\rangle \langle x|^X \otimes \mathcal{N}^{A' \to B}(\phi_{x}^{AA'}) $$

Hsieh and Wilde (2009)
Trade-off Coding (Ctd.)

Full region is additive for the class of “Hadamard” channels (channels whose complements are entanglement-breaking)

Means that we can actually plot it!

Hsieh and Wilde (2009), Bradler, Hayden, Touchette, Wilde (2010)
Conclusion

Additivity is at the heart of our understanding of classical information theory.

Additivity does not hold in many cases for quantum channels (but does for entanglement-assisted capacities).

Open problem: Find explicit counterexample to Holevo additivity.

Open problem: Determine if the classical capacity is an additive function on quantum channels.

Open problem: Find a better formula for the quantum capacity.

Open problem: Find a better characterization for the triple trade-off capacity region other than the multi-letter one.